Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG, The Netherlands.
European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre, Groningen, 9713 AV, The Netherlands.
Int J Mol Sci. 2019 Jan 30;20(3):596. doi: 10.3390/ijms20030596.
Nuclear pore complexes (NPCs) are large protein complexes embedded in the nuclear envelope separating the cytoplasm from the nucleoplasm in eukaryotic cells. They function as selective gates for the transport of molecules in and out of the nucleus. The inner wall of the NPC is coated with intrinsically disordered proteins rich in phenylalanine-glycine repeats (FG-repeats), which are responsible for the intriguing selectivity of NPCs. The phosphorylation state of the FG-Nups is controlled by kinases and phosphatases. In the current study, we extended our one-bead-per-amino-acid (1BPA) model for intrinsically disordered proteins to account for phosphorylation. With this, we performed molecular dynamics simulations to probe the effect of phosphorylation on the Stokes radius of isolated FG-Nups, and on the structure and transport properties of the NPC. Our results indicate that phosphorylation causes a reduced attraction between the residues, leading to an extension of the FG-Nups and the formation of a significantly less dense FG-network inside the NPC. Furthermore, our simulations show that upon phosphorylation, the transport rate of inert molecules increases, while that of nuclear transport receptors decreases, which can be rationalized in terms of modified hydrophobic, electrostatic, and steric interactions. Altogether, our models provide a molecular framework to explain how extensive phosphorylation of FG-Nups decreases the selectivity of the NPC.
核孔复合体(NPC)是一种大型蛋白复合物,嵌入在真核细胞的核膜中,将细胞质与核质分隔开。它们作为分子进出细胞核的选择性门户发挥作用。NPC 的内壁覆盖着富含苯丙氨酸-甘氨酸重复(FG-重复)的固有无序蛋白,这些蛋白负责 NPC 令人着迷的选择性。FG-Nups 的磷酸化状态受激酶和磷酸酶控制。在本研究中,我们将我们的每个氨基酸一个珠子(1BPA)模型扩展到了包含磷酸化的模型,以研究磷酸化对孤立 FG-Nups 的斯托克斯半径、NPC 的结构和运输性质的影响。我们的结果表明,磷酸化会导致残基之间的吸引力降低,从而导致 FG-Nups 的延伸,并在 NPC 内部形成一个密度明显降低的 FG 网络。此外,我们的模拟表明,磷酸化后,惰性分子的运输速率增加,而核运输受体的运输速率降低,这可以用修饰的疏水、静电和空间相互作用来解释。总之,我们的模型提供了一个分子框架,解释了 FG-Nups 的广泛磷酸化如何降低 NPC 的选择性。