Suppr超能文献

深度迁移学习可实现循环肿瘤细胞的示踪。

Deep transfer learning enables lesion tracing of circulating tumor cells.

机构信息

State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

出版信息

Nat Commun. 2022 Dec 12;13(1):7687. doi: 10.1038/s41467-022-35296-0.

Abstract

Liquid biopsy offers great promise for noninvasive cancer diagnostics, while the lack of adequate target characterization and analysis hinders its wide application. Single-cell RNA sequencing (scRNA-seq) is a powerful technology for cell characterization. Integrating scRNA-seq into a CTC-focused liquid biopsy study can perhaps classify CTCs by their original lesions. However, the lack of CTC scRNA-seq data accumulation and prior knowledge hinders further development. Therefore, we design CTC-Tracer, a transfer learning-based algorithm, to correct the distributional shift between primary cancer cells and CTCs to transfer lesion labels from the primary cancer cell atlas to CTCs. The robustness and accuracy of CTC-Tracer are validated by 8 individual standard datasets. We apply CTC-Tracer on a complex dataset consisting of RNA-seq profiles of single CTCs, CTC clusters from a BRCA patient, and two xenografts, and demonstrate that CTC-Tracer has potential in knowledge transfer between different types of RNA-seq data of lesions and CTCs.

摘要

液体活检为非侵入性癌症诊断提供了巨大的前景,而缺乏充分的目标特征描述和分析阻碍了其广泛应用。单细胞 RNA 测序(scRNA-seq)是一种用于细胞特征描述的强大技术。将 scRNA-seq 整合到以 CTC 为重点的液体活检研究中,也许可以根据其原始病变对 CTC 进行分类。然而,由于缺乏 CTC scRNA-seq 数据积累和先验知识,进一步的发展受到了阻碍。因此,我们设计了基于转移学习的算法 CTC-Tracer,以纠正原发性癌细胞和 CTC 之间的分布偏移,从而将原发性癌细胞图谱中的病变标签转移到 CTC 上。CTC-Tracer 的稳健性和准确性通过 8 个独立的标准数据集得到了验证。我们将 CTC-Tracer 应用于一个由单个 CTC 的 RNA-seq 图谱、BRCA 患者的 CTC 簇和两个异种移植物的 RNA-seq 数据组成的复杂数据集,结果表明 CTC-Tracer 具有在不同类型的病变和 CTC 的 RNA-seq 数据之间进行知识转移的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7a6/9744915/5cd5f43b1a01/41467_2022_35296_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验