文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于早期癌症诊断的循环肿瘤细胞检测进展:机器学习算法与微流控技术的整合

Advancements in Circulating Tumor Cell Detection for Early Cancer Diagnosis: An Integration of Machine Learning Algorithms with Microfluidic Technologies.

作者信息

An Ling, Liu Yi, Liu Yaling

机构信息

School of Engineering, Dali University, Dali 671003, China.

Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

Biosensors (Basel). 2025 Mar 29;15(4):220. doi: 10.3390/bios15040220.


DOI:10.3390/bios15040220
PMID:40277534
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024602/
Abstract

Circulating tumor cells (CTCs) are vital indicators of metastasis and provide a non-invasive method for early cancer diagnosis, prognosis, and therapeutic monitoring. However, their low prevalence and heterogeneity in the bloodstream pose significant challenges for detection. Microfluidic systems, or "lab-on-a-chip" devices, have emerged as a revolutionary tool in liquid biopsy, enabling efficient isolation and analysis of CTCs. These systems offer advantages such as reduced sample volume, enhanced sensitivity, and the ability to integrate multiple processes into a single platform. Several microfluidic techniques, including size-based filtration, dielectrophoresis, and immunoaffinity capture, have been developed to enhance CTC detection. The integration of machine learning (ML) with microfluidic systems has further improved the specificity and accuracy of CTC detection, significantly advancing the speed and efficiency of early cancer diagnosis. ML models have enabled more precise analysis of CTCs by automating detection processes and enhancing the ability to identify rare and heterogeneous cell populations. These advancements have already demonstrated their potential in improving diagnostic accuracy and enabling more personalized treatment approaches. In this review, we highlight the latest progress in the integration of microfluidic technologies and ML algorithms, emphasizing how their combination has changed early cancer diagnosis and contributed to significant advancements in this field.

摘要

循环肿瘤细胞(CTCs)是转移的重要指标,为癌症早期诊断、预后评估和治疗监测提供了一种非侵入性方法。然而,它们在血液中的低丰度和异质性给检测带来了重大挑战。微流控系统,即“芯片实验室”设备,已成为液体活检中的一项革命性工具,能够对CTCs进行高效分离和分析。这些系统具有减少样本量、提高灵敏度以及将多个过程集成到单个平台的能力等优势。已经开发了几种微流控技术,包括基于尺寸的过滤、介电电泳和免疫亲和捕获,以提高CTCs的检测能力。机器学习(ML)与微流控系统的集成进一步提高了CTCs检测的特异性和准确性,显著提高了早期癌症诊断的速度和效率。ML模型通过自动化检测过程和增强识别罕见和异质细胞群体的能力,实现了对CTCs更精确的分析。这些进展已经证明了它们在提高诊断准确性和实现更个性化治疗方法方面的潜力。在这篇综述中,我们重点介绍了微流控技术与ML算法集成的最新进展,强调了它们的结合如何改变了早期癌症诊断并推动了该领域的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/e4b66094456c/biosensors-15-00220-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/789bcfe3b59f/biosensors-15-00220-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/5a46ddd937b1/biosensors-15-00220-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/17d40ee0da9e/biosensors-15-00220-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/3a8d9f1f37ee/biosensors-15-00220-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/4b0b932c99aa/biosensors-15-00220-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/0b6e5609d532/biosensors-15-00220-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/e4b66094456c/biosensors-15-00220-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/789bcfe3b59f/biosensors-15-00220-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/5a46ddd937b1/biosensors-15-00220-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/17d40ee0da9e/biosensors-15-00220-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/3a8d9f1f37ee/biosensors-15-00220-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/4b0b932c99aa/biosensors-15-00220-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/0b6e5609d532/biosensors-15-00220-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9d/12024602/e4b66094456c/biosensors-15-00220-g007.jpg

相似文献

[1]
Advancements in Circulating Tumor Cell Detection for Early Cancer Diagnosis: An Integration of Machine Learning Algorithms with Microfluidic Technologies.

Biosensors (Basel). 2025-3-29

[2]
Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer.

Biomed Pharmacother. 2021-2

[3]
The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection.

Small Methods. 2022-7

[4]
Microfluidics for the Isolation and Detection of Circulating Tumor Cells.

Adv Exp Med Biol. 2022

[5]
Lateral Filter Array Microfluidic Devices for Detecting Circulating Tumor Cells.

Methods Mol Biol. 2023

[6]
Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip.

Small. 2020-3

[7]
[Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].

Se Pu. 2022-3-8

[8]
Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy.

Int J Mol Sci. 2022-2-10

[9]
Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.

BMC Cancer. 2016-8-8

[10]
Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm.

Theranostics. 2017-10-17

引用本文的文献

[1]
The impact of liquid biopsy in breast cancer: Redefining the landscape of non-invasive precision oncology.

J Liq Biopsy. 2025-5-21

[2]
The development and applications of circulating tumour cells, circulating tumour DNA and other emerging biomarkers for early cancer detection.

Explor Target Antitumor Ther. 2025-5-13

本文引用的文献

[1]
Validation of a Microfluidic Device Prototype for Cancer Detection and Identification: Circulating Tumor Cells Classification Based on Cell Trajectory Analysis Leveraging Cell-Based Modeling and Machine Learning.

Int J Numer Method Biomed Eng. 2025-4

[2]
Atomic force microscopy combined with microfluidics for label-free sorting and automated nanomechanics of circulating tumor cells in liquid biopsy.

Nanoscale. 2025-2-20

[3]
Detection of circulating tumor cells using a microfluidic chip for diagnostics and therapeutic prediction in mediastinal neuroblastoma.

Eur J Pediatr. 2024-12-20

[4]
Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis.

Biomark Res. 2024-12-5

[5]
Antigen-independent single-cell circulating tumor cell detection using deep-learning-assisted biolasers.

Biosens Bioelectron. 2025-3-1

[6]
Integrating machine learning-predicted circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in metastatic breast cancer: A proof of principle study on endocrine resistance profiling.

Cancer Lett. 2025-1-28

[7]
Machine learning assisted dual-modal SERS detection for circulating tumor cells.

Biosens Bioelectron. 2025-1-15

[8]
Detection of circulating tumor cells in non-metastatic prostate cancer through integration of a microfluidic CTC enrichment system and multiparametric flow cytometry.

PLoS One. 2024

[9]
The prognostic significance of circulating tumor cell enumeration and HER2 expression by a novel automated microfluidic system in metastatic breast cancer.

BMC Cancer. 2024-8-29

[10]
An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells.

Anal Chem. 2024-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索