Integrated Geoinformation (IntGeo) Solution Private Limited, New Delhi, India.
Department of Geoinformatic Engineering, Inha University, Incheon, South Korea.
Sci Rep. 2022 Dec 12;12(1):21445. doi: 10.1038/s41598-022-25994-6.
The tide gauge measurements from global navigation satellite system reflectometry (GNSS-R) observables are considered to be a promising alternative to the traditional tide gauges in the present days. In the present paper, we deliver a comparative analysis of tide-gauge (TG) measurements retrieved by quasi-zenith satellite system-reflectometry (QZSS-R) and the legacy TG recordings with additional observables from other constellations viz. GPS-R and GLONASS-R. The signal-to-noise ratio data of QZSS (L1, L2, and L5 signals) retrieved at the P109 site of GNSS Earth Observation Network in Japan (37.815° N; 138.281° E; 44.70 m elevation in ellipsoidal height) during 01 October 2019 to 31 December 2019. The results from QZSS observations at L1, L2, and L5 signals show respective correlation coefficients of 0.8712, 0.6998, and 0.8763 with observed TG measurements whereas the corresponding root means square errors were 4.84 cm, 4.26 cm, and 4.24 cm. The QZSS-R signals revealed almost equivalent precise results to that of GPS-R (L1, L2, and L5 signals) and GLONASS-R (L1 and L2 signals). To reconstruct the tidal variability for QZSS-R measurements, a machine learning technique, i.e., kernel extreme learning machine (KELM) is implemented that is based on variational mode decomposition of the parameters. These KELM reconstructed outcomes from QZSS-R L1, L2, and L5 observables provide the respective correlation coefficients of 0.9252, 0.7895, and 0.9146 with TG measurements. The mean errors between the KELM reconstructed outcomes and observed TG measurements for QZSS-R, GPS-R, and GLONASS-R very often lies close to the zero line, confirming that the KELM-based estimates from GNSS-R observations can provide alternative unbiased estimations to the traditional TG measurement. The proposed method seems to be effective, foreseeing a dense tide gauge estimations with the available QZSS-R along with other GNSS-R observables.
利用全球导航卫星系统反射测量(GNSS-R)观测值的验潮仪测量被认为是当今替代传统验潮仪的一种很有前途的方法。本文对通过 quasi-zenith 卫星系统反射测量(QZSS-R)和其他星座(GPS-R 和 GLONASS-R)的附加观测值获取的验潮仪(TG)测量进行了比较分析。在日本 GNSS 地球观测网络的 P109 站点(37.815°N;138.281°E;44.70 m 海拔高度),在 2019 年 10 月 1 日至 2019 年 12 月 31 日期间,获取了 QZSS 的 L1、L2 和 L5 信号的信噪比数据。QZSS 观测结果在 L1、L2 和 L5 信号上与观测到的 TG 测量值的相关系数分别为 0.8712、0.6998 和 0.8763,相应的均方根误差分别为 4.84cm、4.26cm 和 4.24cm。QZSS-R 信号显示出与 GPS-R(L1、L2 和 L5 信号)和 GLONASS-R(L1 和 L2 信号)几乎相同的精确结果。为了重建 QZSS-R 测量的潮汐变化,采用了基于参数变分模态分解的机器学习技术,即核极限学习机(KELM)。基于 KELM 的 QZSS-R L1、L2 和 L5 观测结果的重构结果与 TG 测量值的相关系数分别为 0.9252、0.7895 和 0.9146。QZSS-R、GPS-R 和 GLONASS-R 的 KELM 重构结果与观测到的 TG 测量值之间的平均误差通常接近零,这证实了基于 GNSS-R 观测的 KELM 估计可以为传统 TG 测量提供替代的无偏估计。该方法似乎是有效的,通过利用现有的 QZSS-R 以及其他 GNSS-R 观测值,有望实现潮汐计的密集估算。