Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
Sci Rep. 2022 Dec 12;12(1):21455. doi: 10.1038/s41598-022-25877-w.
In this study, we have synthesized a solid acid catalyst by areca nut husk using low temperature hydrothermal carbonization method. The fabricated catalyst has enhanced sulfonic actives sites (3.12%) and high acid density (1.88 mmol g) due to -SOH, which are used significantly for effective biodiesel synthesis at low temperatures. The chemical composition and morphology of the catalyst is determined by various techniques, such as Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Scanning electron microscope (SEM), Energy disruptive spectroscopy (EDS), Mapping, Thermogravimetric analysis (TGA), CHNS analyzer, Transmission electron microscopy (TEM), particle size analyzer, and X-ray photoelectron spectroscopy (XPS). Acid-base back titration method was used to determine the acid density of the synthesized material. In the presence of the as-fabricated catalyst, the conversion of oleic acid (OA) to methyl oleate reached 96.4% in 60 min under optimized conditions (1:25 Oleic acid: methanol ratio, 80 °C, 60 min, 9 wt% catalyst dosage) and observed low activation energy of 45.377 kJ mol. The presence of the porous structure and sulfonic groups of the catalyst contributes to the high activity of the catalyst. The biodiesel synthesis was confirmed by gas-chromatography mass spectrometer (GC-MS) and Nuclear magnetic resonance (NMR). The reusability of the catalyst was examined up to four consecutive cycles, yielding a high 85% transformation of OA to methyl oleate on the fourth catalytic cycle.
在这项研究中,我们使用低温水热碳化法从槟榔壳中合成了一种固体酸催化剂。由于-SOH 的存在,制备的催化剂具有增强的磺酸活性位(3.12%)和高酸密度(1.88 mmol g),这对于在低温下有效合成生物柴油非常有用。催化剂的化学组成和形态通过各种技术确定,如傅里叶变换红外(FTIR)、粉末 X 射线衍射(XRD)、BET、扫描电子显微镜(SEM)、能量色散光谱(EDS)、Mapping、热重分析(TGA)、CHNS 分析仪、透射电子显微镜(TEM)、粒度分析仪和 X 射线光电子能谱(XPS)。酸碱反滴定法用于测定合成材料的酸密度。在制备的催化剂存在下,在优化条件下(1:25 油酸:甲醇比、80°C、60 分钟、9 wt%催化剂用量),油酸(OA)转化为油酸甲酯的转化率达到 96.4%,观察到的活化能低至 45.377 kJ mol。催化剂的多孔结构和磺酸基团的存在有助于提高催化剂的活性。通过气相色谱-质谱联用仪(GC-MS)和核磁共振(NMR)证实了生物柴油的合成。催化剂的可重复使用性在四个连续循环中进行了检查,在第四个催化循环中,OA 转化为油酸甲酯的转化率高达 85%。