Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.
Nat Nanotechnol. 2023 Jan;18(1):64-70. doi: 10.1038/s41565-022-01264-4. Epub 2022 Dec 12.
Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO or α-VO) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.
各种光学晶体在中红外区域沿不同的主方向具有相反符号的介电常数分量,表现出奇异的各向异性声子共振。这些具有双曲极化激元(具有开放等频轮廓的光物质准粒子)的材料具有大动量光学模式和波限制,这使得它们在纳米光子片上技术中很有前景。到目前为止,在具有高对称性的晶体中已经观察到并表征了双曲极化激元,包括六方(氮化硼)、三角(方解石)和正交(α-MoO 或 α-VO)晶体,在这些晶体中,它们遵循某些传播模式。然而,最近的研究表明,对称性较低的材料,如单斜晶体,为极化激元现象提供了更丰富的机会。在这里,我们使用扫描近场光学显微镜,直接在单斜 CdWO 晶体中对对称性破缺的双曲声子极化激元进行了纳米尺度的实空间成像,并展示了与纳米尺度剪切现象相关的固有非对称极化激元激发和传播。我们还引入了一个定量理论模型来描述这些极化激元,这些极化激元可以通过声子模式的阻尼损耗来增强晶体的不对称性。最终,我们的研究结果表明,利用低对称性的天然材料可以实现极化激元纳米光子学,从而为在纳米尺度上控制光提供了一种通用的方法。