Hutchins William, Zare Saman, Hirt Dan M, Tomko John A, Matson Joseph R, Diaz-Granados Katja, Long Mackey, He Mingze, Pfeifer Thomas, Li Jiahan, Edgar James H, Maria Jon-Paul, Caldwell Joshua D, Hopkins Patrick E
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
Nat Mater. 2025 May;24(5):698-706. doi: 10.1038/s41563-025-02154-5. Epub 2025 Mar 17.
Thermal transport across solid-solid interfaces is vital for advanced electronic and photonic applications, yet conventional conduction pathways often restrict performance. In polar crystals, hybridized vibrational modes called phonon polaritons offer a promising avenue to overcome the limitations of intrinsic phonon heat conduction. Here our work demonstrates that volume-confined hyperbolic phonon polariton (HPhP) modes can transfer energy across solid-solid interfaces at rates far exceeding phonon-phonon conduction. Using pump-probe thermoreflectance with a mid-infrared, tunable probe pulse with subpicosecond resolution, we remotely and selectively observe HPhP modes in hexagonal boron nitride (hBN) via broadband radiative heating from a gold source. Our measurements ascertain that hot electrons impinging at the interface radiate directly into the HPhPs of hBN in the near field, bypassing the phonon-phonon transport pathway. Such polaritonic coupling enables thermal transport speeds in solids orders of magnitude faster than possible through diffusive phonon processes. We thereby showcase a pronounced thermal transport enhancement across the gold-hBN interface via phonon-polariton coupling, advancing the limits of interfacial heat transfer.
跨固-固界面的热传输对于先进的电子和光子应用至关重要,但传统的传导途径常常限制了性能。在极性晶体中,一种称为声子极化激元的杂化振动模式为克服本征声子热传导的局限性提供了一条有前景的途径。在此,我们的工作表明,体积受限的双曲线型声子极化激元(HPhP)模式能够以远远超过声子-声子传导的速率跨固-固界面传递能量。利用具有亚皮秒分辨率的中红外可调谐探测脉冲的泵浦-探测热反射技术,我们通过来自金源的宽带辐射加热,远程且选择性地观测到六方氮化硼(hBN)中的HPhP模式。我们的测量确定,撞击在界面处的热电子在近场中直接辐射到hBN的HPhP中,绕过了声子-声子传输途径。这种极化激元耦合使得固体中的热传输速度比通过扩散声子过程快几个数量级。我们由此展示了通过声子-极化激元耦合在金-hBN界面上实现的显著热传输增强,推进了界面热传递的极限。