Barcza Gergely, Werner Miklós Antal, Zaránd Gergely, Pershin Anton, Benedek Zsolt, Legeza Örs, Szilvási Tibor
Wigner Research Centre for Physics, H-1525Budapest, Hungary.
Department of Physics of Complex Systems, ELTE Eötvös Loránd University, H-1117, Budapest, Hungary.
J Phys Chem A. 2022 Dec 29;126(51):9709-9718. doi: 10.1021/acs.jpca.2c05952. Epub 2022 Dec 15.
We present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C and Cr, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.
我们提出了一种基于施密特分解的替代方法,该方法内存高效,用于描述本质上二分的受限活性空间(RAS)方案。通过动态扩展活性空间过程,该方法可以在密度矩阵重整化群(DMRG)方法中轻松实现。基准计算结果与碳(C)和铬(Cr)的最新结果进行了比较,这两种元素因其多参考特性而闻名。我们关于基态和激发态的结果以及光谱常数表明,所提出的被称为DMRG-RAS的新方法是变分的,且没有不受控制的方法误差,有潜力在处理强关联分子时超越传统方法。