Dale L, Slack J M
Imperial Cancer Research Fund, Developmental Biology Unit, University of Oxford, UK.
Development. 1987 Jun;100(2):279-95. doi: 10.1242/dev.100.2.279.
We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce 'dorsal-type' mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2-4) induce either 'intermediate-type' (muscle, mesothelium, mesenchyme and blood) or 'ventral-type' (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.
我们进一步分析了中胚层诱导和背化在非洲爪蟾早期胚胎中区域特异性中胚层形成过程中的作用。首先,我们通过从32细胞胚胎的最植物极层分离单个卵裂球,并将每个卵裂球与一个经谱系标记(FDA)的动物卵裂球层结合,来研究中胚层诱导的区域特异性。背植物极(D1)卵裂球诱导“背侧型”中胚层(脊索和肌肉),而侧植物极和腹植物极卵裂球(D2 - 4)诱导“中间型”(肌肉、间皮、间充质和血液)或“腹侧型”(间皮、间充质和血液)中胚层。未检测到D2、3和4卵裂球之间在诱导特异性上有显著差异。我们还表明,早期卵裂阶段的侧植物极和腹植物极卵裂球通过手术操作可部分激活其背侧诱导潜能,从而诱导中间型中胚层的形成。其次,我们通过在4细胞期到早期原肠胚期之间分离并体外培养腹侧卵裂球,来确定其分化状态。在所有测试阶段,从胚胎腹侧半部分分离出的大多数细胞呈现出极端腹侧类型的分化。尽管少数情况下形成了中间型和背侧型中胚层,但我们认为这要么是由于我们对预期背腹轴评估的误差,要么是由于显微手术引发的某些背侧诱导特异性的增强。诱导和分离实验的结果表明,原肠胚前胚胎的中胚层仅存在两种分化状态,即背侧型和腹侧型。最后,我们使用FDA区分各成分,对边缘区的不同区域进行了一系列全面的组合实验。我们发现,与背侧型中胚层结合时,腹侧型中胚层会背化到中间型中胚层的水平。在这些组合中,背侧型中胚层不会腹化。背化活性局限于背侧边缘区的一个受限区域,它比预期的脊索更宽,并且似乎从背中线的一个高点呈梯度变化。这些实验结果进一步支持了先前提出的三信号模型,即背侧和腹侧中胚层诱导随后是背化,这是能够解释非洲爪蟾早期胚胎中胚层内区域特异性的最简单解释。