Suppr超能文献

重新审视EWMA符号图:无平局和有平局情况下的性能及替代方法

The EWMA sign chart revisited: performance and alternatives without and with ties.

作者信息

Perdikis Theodoros, Psarakis Stelios, Castagliola Philippe, Rakitzis Athanasios C, Maravelakis Petros E

机构信息

Department of Statistics & Laboratory of Statistical Methodology, Athens University of Economics and Business Athens, Athens, Greece.

Université de Nantes & LS2N UMR CNRS 6004, Nantes, France.

出版信息

J Appl Stat. 2021 Oct 4;50(1):170-194. doi: 10.1080/02664763.2021.1982879. eCollection 2023.

Abstract

The EWMA Sign control chart is an efficient tool for monitoring shifts in a process regardless the observations' underlying distribution. Recent studies have shown that, for nonparametric control charts, due to the discrete nature of the statistics being used (such as the Sign statistic), it is impossible to accurately compute their Run Length properties using Markov chain or integral equation methods. In this work, a modified nonparametric Phase II EWMA chart based on the Sign statistic is proposed and its Run Length properties are discussed. A continuous transformation of the Sign statistic, combined with the classical Markov Chain method, is used for the determination of the chart's in- and out-of-control Run Length properties. Additionally, we show that when ties occur due to measurement rounding-off errors, the EWMA Sign control chart is no longer distribution-free and a Bernoulli trial approach is discussed to handle the occurrence of ties and makes the proposed chart almost distribution-free. Finally, an illustrative example is provided to show the practical implementation of our proposed chart.

摘要

EWMA 符号控制图是一种有效的工具,可用于监测过程中的变化,而无需考虑观测值的潜在分布。最近的研究表明,对于非参数控制图,由于所使用统计量(如符号统计量)的离散性质,使用马尔可夫链或积分方程方法无法准确计算其运行长度属性。在这项工作中,提出了一种基于符号统计量的改进型非参数II期EWMA图,并讨论了其运行长度属性。通过对符号统计量进行连续变换,并结合经典马尔可夫链方法,来确定该控制图的失控和在控运行长度属性。此外,我们表明,当由于测量舍入误差出现平局时,EWMA符号控制图不再是分布无关的,本文讨论了一种伯努利试验方法来处理平局的出现,并使所提出的控制图几乎是分布无关的。最后,给出了一个示例来说明我们所提出控制图的实际应用。

相似文献

1
The EWMA sign chart revisited: performance and alternatives without and with ties.
J Appl Stat. 2021 Oct 4;50(1):170-194. doi: 10.1080/02664763.2021.1982879. eCollection 2023.
2
A nonparametric mixed exponentially weighted moving average-moving average control chart with an application to gas turbines.
PLoS One. 2024 Aug 13;19(8):e0307559. doi: 10.1371/journal.pone.0307559. eCollection 2024.
4
Distribution-free Phase II triple EWMA control chart for joint monitoring the process location and scale parameters.
J Appl Stat. 2023 Mar 15;51(6):1171-1190. doi: 10.1080/02664763.2023.2189771. eCollection 2024.
6
A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data.
J Appl Stat. 2020 Feb 18;48(3):434-454. doi: 10.1080/02664763.2020.1729347. eCollection 2021.
8
New extended exponentially weighted moving average control chart for monitoring process mean.
Heliyon. 2024 Jul 9;10(14):e34424. doi: 10.1016/j.heliyon.2024.e34424. eCollection 2024 Jul 30.
9
Memory type Max-EWMA control chart for the Weibull process under the Bayesian theory.
Sci Rep. 2024 Feb 7;14(1):3111. doi: 10.1038/s41598-024-52109-0.

本文引用的文献

1
A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data.
J Appl Stat. 2020 Feb 18;48(3):434-454. doi: 10.1080/02664763.2020.1729347. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验