Suppr超能文献

带应用于燃气轮机的非参数混合指数加权移动平均-移动平均控制图。

A nonparametric mixed exponentially weighted moving average-moving average control chart with an application to gas turbines.

机构信息

Department of Statistics, Government College University Faisalabad, Faisalabad, Pakistan.

Department of Mathematics, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia.

出版信息

PLoS One. 2024 Aug 13;19(8):e0307559. doi: 10.1371/journal.pone.0307559. eCollection 2024.

Abstract

This study aims to develop a nonparametric mixed exponentially weighted moving average-moving average (NPEWMA-MA) sign control chart for monitoring shifts in process location, particularly when the distribution of a critical quality characteristic is either unknown or non-normal. In literature, the variance expression of the mixed exponentially weighted moving average-moving average (EWMA-MA) statistic is calculated by allowing sequential moving averages to be independent, and thus the exclusion of covariance terms results in an inaccurate variance expression. Furthermore, the effectiveness of the EWMA-MA control chart deteriorates when the distribution of a critical quality characteristic deviates from normality. The proposed NPEWMA-MA sign control chart addresses these by utilizing the corrected variance of the EWMA-MA statistic and incorporating the nonparametric sign test into the EWMA-MA charting structure. The chart integrates the moving average (MA) statistic into the exponentially weighted moving average (EWMA) statistic. The EWMA-MA charting statistic assigns more weight to recent w samples, with weights for previous observations decling exponentially. Monte Carlo simulations assess the chart's performance using various run length (RL) characteristics such as average run length (ARL), standard deviation of run length (SDRL), and median run length (MRL). Additional measures for overall performance include the average extra quadratic loss (AEQL) and relative mean index (RMI). The proposed NPEWMA-MA sign control chart demonstrates superior performance compared to existing nonparametric control charts across different symmetrical and asymmetric distributions. It efficiently detects process shifts, as validated through both a simulated study and a real-life example from a combined cycle power plant.

摘要

本研究旨在开发一种用于监控过程位置偏移的非参数混合指数加权移动平均-移动平均(NPEWMA-MA)符号控制图,特别是当关键质量特性的分布未知或非正态时。在文献中,混合指数加权移动平均-移动平均(EWMA-MA)统计量的方差表达式是通过允许顺序移动平均值独立计算得到的,因此排除协方差项会导致方差表达式不准确。此外,当关键质量特性的分布偏离正态性时,EWMA-MA 控制图的有效性会降低。所提出的 NPEWMA-MA 符号控制图通过利用 EWMA-MA 统计量的修正方差并将非参数符号检验纳入 EWMA-MA 图表结构来解决这些问题。该图表将移动平均(MA)统计量集成到指数加权移动平均(EWMA)统计量中。EWMA-MA 图表统计量赋予最近 w 个样本更大的权重,而先前观察结果的权重则呈指数下降。蒙特卡罗模拟使用各种运行长度(RL)特征(如平均运行长度(ARL)、运行长度标准差(SDRL)和中位数运行长度(MRL))评估图表的性能。整体性能的其他衡量标准包括平均额外二次损失(AEQL)和相对平均指数(RMI)。与不同对称和不对称分布的现有非参数控制图相比,所提出的 NPEWMA-MA 符号控制图表现出优越的性能。它通过模拟研究和联合循环发电厂的实际示例验证了有效地检测过程偏移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be9/11321579/3cd5dc4eb1f2/pone.0307559.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验