Suppr超能文献

一种用于监测事件间隔和幅度数据的无分布指数加权移动平均控制图。

A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data.

作者信息

Wu Shu, Castagliola Philippe, Celano Giovanni

机构信息

School of Logistics Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.

Université de Nantes & LS2N UMR CNRS 6004, Nantes, France.

出版信息

J Appl Stat. 2020 Feb 18;48(3):434-454. doi: 10.1080/02664763.2020.1729347. eCollection 2021.

Abstract

Many control charts have been developed for the simultaneous monitoring of the time interval between successive occurrences of an event E and its magnitude . All these TBEA (Time Between Events and Amplitude) control charts assume a known distribution for the random variables and . But, in practice, as it is rather difficult to know their actual distributions, proposing a distribution free approach could be a way to overcome this 'distribution choice' dilemma. For this reason, we propose in this paper a distribution free upper-sided EWMA (Exponentially Weighted Moving Average) type control chart, for simultaneously monitoring the time interval and the magnitude of an event. In order to investigate the performance of this control chart and obtain its run length properties, we also develop a specific method called 'continuousify' which, coupled with a classical Markov chain technique, allows to obtain reliable and replicable results. A numerical comparison shows that our distribution-free EWMA TBEA chart performs as the parametric Shewhart TBEA chart, but without the need to pre-specify any distribution. An illustrative example obtained from a French forest fire database is also provided to show the implementation of the proposed EWMA TBEA control chart.

摘要

已经开发出许多控制图,用于同时监测事件E连续发生之间的时间间隔及其幅度。所有这些事件间时间与幅度(TBEA)控制图都假定随机变量和具有已知分布。但是,在实际中,由于很难知道它们的实际分布,提出一种无分布方法可能是克服这种“分布选择”困境的一种途径。因此,我们在本文中提出一种无分布的上侧指数加权移动平均(EWMA)型控制图,用于同时监测事件的时间间隔和幅度。为了研究该控制图的性能并获得其运行长度特性,我们还开发了一种称为“连续化”的特定方法,该方法与经典的马尔可夫链技术相结合,能够获得可靠且可重复的结果。数值比较表明,我们的无分布EWMA TBEA图的性能与参数化休哈特TBEA图相同,但无需预先指定任何分布。还提供了一个从法国森林火灾数据库获得的示例,以展示所提出的EWMA TBEA控制图的实施情况。

相似文献

1
A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data.
J Appl Stat. 2020 Feb 18;48(3):434-454. doi: 10.1080/02664763.2020.1729347. eCollection 2021.
2
Exponentially weighted moving average-Moving average charts for monitoring the process mean.
PLoS One. 2020 Feb 14;15(2):e0228208. doi: 10.1371/journal.pone.0228208. eCollection 2020.
3
A one-sided exponentially weighted moving average control chart for time between events.
J Appl Stat. 2021 Aug 21;49(15):3928-3957. doi: 10.1080/02664763.2021.1967894. eCollection 2022.
4
The EWMA sign chart revisited: performance and alternatives without and with ties.
J Appl Stat. 2021 Oct 4;50(1):170-194. doi: 10.1080/02664763.2021.1982879. eCollection 2023.
5
A simple approach for monitoring business service time variation.
ScientificWorldJournal. 2014;2014:238719. doi: 10.1155/2014/238719. Epub 2014 May 7.
6
Monitoring of zero-inflated binomial processes with a DEWMA control chart.
J Appl Stat. 2020 May 7;48(7):1319-1338. doi: 10.1080/02664763.2020.1761950. eCollection 2021.
7
A nonparametric mixed exponentially weighted moving average-moving average control chart with an application to gas turbines.
PLoS One. 2024 Aug 13;19(8):e0307559. doi: 10.1371/journal.pone.0307559. eCollection 2024.
8
New extended exponentially weighted moving average control chart for monitoring process mean.
Heliyon. 2024 Jul 9;10(14):e34424. doi: 10.1016/j.heliyon.2024.e34424. eCollection 2024 Jul 30.
9
Distribution-free Phase II triple EWMA control chart for joint monitoring the process location and scale parameters.
J Appl Stat. 2023 Mar 15;51(6):1171-1190. doi: 10.1080/02664763.2023.2189771. eCollection 2024.
10
Effect of resolution of measurements in the behavior of exponentially weighted moving average control charts.
PDA J Pharm Sci Technol. 2013 May-Jun;67(3):288-95. doi: 10.5731/pdajpst.2013.00921.

引用本文的文献

1
Monitoring the process mean under the Bayesian approach with application to hard bake process.
Sci Rep. 2023 Nov 25;13(1):20723. doi: 10.1038/s41598-023-48206-1.
2
The EWMA sign chart revisited: performance and alternatives without and with ties.
J Appl Stat. 2021 Oct 4;50(1):170-194. doi: 10.1080/02664763.2021.1982879. eCollection 2023.
3
A one-sided exponentially weighted moving average control chart for time between events.
J Appl Stat. 2021 Aug 21;49(15):3928-3957. doi: 10.1080/02664763.2021.1967894. eCollection 2022.

本文引用的文献

1
On designing a new cumulative sum Wilcoxon signed rank chart for monitoring process location.
PLoS One. 2018 Apr 17;13(4):e0195762. doi: 10.1371/journal.pone.0195762. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验