Suppr超能文献

饮茶与7种心血管疾病之间无因果关联:一项两样本孟德尔随机化研究。

No causal association between tea consumption and 7 cardiovascular disorders: A two-sample Mendelian randomization study.

作者信息

Cai Dongsheng, Chen Jun, Wu Yuteng, Jiang Chenyang

机构信息

Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.

出版信息

Front Genet. 2022 Nov 30;13:989772. doi: 10.3389/fgene.2022.989772. eCollection 2022.

Abstract

Previous studies have reported inconsistent results on the causal association between habitual tea consumption and the risk of cardiovascular disease (CVD). This study is aim to determine the association between habitual tea intake and CVD using two-sample Mendelian randomization (MR) analysis. The genetically predicted causation between tea consumption and 7 common cardiovascular diseases (atrial fibrillation, hypertension, acute myocardial infarction, coronary atherosclerosis, peripheral vascular disease, angina, and heart failure) was evaluated using MR analysis model. We performed a total of 9 MR analysis methods to analyze the final results. The IVW methods was used as the primary outcome. The other MR analysis method (simple mode, weighted mode, simple median, weighted median, penalized weighted median, MR Egger, and MR-Egger (bootstrap)) were performed as the complement to IVW. Also, the robustness of the MR analysis results was assessed using a leave-one-out analysis. The IVW analysis methods indicated that there is no causal association between tea consumption and risk of CVD (AF: OR, 0.997, 95% CI, 0.992-1.0001, = 0.142; hypertension: OR, 0.976, 95% CI, 0.937-1.017, = 0.242; AMI: OR, 0.996, 95% CI, 0.991-1.000, = 0.077; CA: OR, 1.001, 95% CI, 0.993-1.009, = 0.854; PVD: OR, 1.002, 95% CI, 1.000-1.005, = 0.096; angina: OR, 0.999, 95% CI, 0.993-1.006, = 0.818; HF: OR, 0.999, 95% CI, 0.996-1.002, = 0.338). The other MR analysis method and further leave-one-out sensitivity analysis suggested the results were robust. This MR study indicated that there was no genetically predicted causal association between habitual tea intake and risk of CVD.

摘要

以往的研究报告了习惯性饮茶与心血管疾病(CVD)风险之间因果关联的不一致结果。本研究旨在使用两样本孟德尔随机化(MR)分析来确定习惯性饮茶与CVD之间的关联。使用MR分析模型评估了饮茶与7种常见心血管疾病(心房颤动、高血压、急性心肌梗死、冠状动脉粥样硬化、外周血管疾病、心绞痛和心力衰竭)之间的遗传预测因果关系。我们总共进行了9种MR分析方法来分析最终结果。IVW方法用作主要结果。其他MR分析方法(简单模式、加权模式、简单中位数、加权中位数、惩罚加权中位数、MR Egger和MR-Egger(自抽样法))作为IVW的补充进行。此外,使用留一法分析评估MR分析结果的稳健性。IVW分析方法表明,饮茶与CVD风险之间不存在因果关联(心房颤动:比值比(OR),0.997,95%置信区间(CI),0.992-1.0001,P = 0.142;高血压:OR,0.976,95% CI,0.937-1.017,P = 0.242;急性心肌梗死:OR,0.996,95% CI,0.991-1.000,P = 0.077;冠状动脉粥样硬化:OR,1.001,95% CI,0.993-1.009,P = 0.854;外周血管疾病:OR,1.002,95% CI,1.000-1.005,P = 0.096;心绞痛:OR,0.999,95% CI,0.993-1.006,P = 0.818;心力衰竭:OR,0.999,95% CI,0.996-1.002,P = 0.338)。其他MR分析方法和进一步的留一法敏感性分析表明结果是稳健的。这项MR研究表明,习惯性饮茶与CVD风险之间不存在遗传预测的因果关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff2/9748479/f1f8c8df34fd/fgene-13-989772-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验