Suppr超能文献

机器学习方法预测颗粒物 PM 。

Machine learning methods to predict particulate matter PM .

机构信息

Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia.

Department of Electrical Engineering, Annamalai University, India, Chidambaram, Tamil Nadu, 608002, India.

出版信息

F1000Res. 2022 Apr 11;11:406. doi: 10.12688/f1000research.73166.1. eCollection 2022.

Abstract

Introduction Pollution of air in urban cities across the world has been steadily increasing in recent years. An increasing trend in particulate matter, PM , is a threat because it can lead to uncontrollable consequences like worsening of asthma and cardiovascular disease. The metric used to measure air quality is the air pollutant index (API). In Malaysia, machine learning (ML) techniques for PM have received less attention as the concentration is on predicting other air pollutants. To fill the research gap, this study focuses on correctly predicting PM concentrations in the smart cities of Malaysia by comparing supervised ML techniques, which helps to mitigate its adverse effects. Methods In this paper, ML models for forecasting PM concentrations were investigated on Malaysian air quality data sets from 2017 to 2018. The dataset was preprocessed by data cleaning and a normalization process. Next, it was reduced into an informative dataset with location and time factors in the feature extraction process. The dataset was fed into three supervised ML classifiers, which include random forest (RF), artificial neural network (ANN) and long short-term memory (LSTM). Finally, their output was evaluated using the confusion matrix and compared to identify the best model for the accurate prediction of PM . Results Overall, the experimental result shows an accuracy of 97.7% was obtained by the RF model in comparison with the accuracy of ANN (61.14%) and LSTM (61.77%) in predicting PM . Discussion RF performed well when compared with ANN and LSTM for the given data with minimum features. RF was able to reach good accuracy as the model learns from the random samples by using decision tree with the maximum vote on the predictions.

摘要

引言

近年来,全球城市的空气污染水平一直在稳步上升。颗粒物(PM)的上升趋势是一个威胁,因为它可能导致哮喘和心血管疾病等不可控后果的恶化。用于衡量空气质量的指标是空气污染指数(API)。在马来西亚,由于专注于预测其他空气污染物,因此对 PM 的机器学习(ML)技术的关注较少。为了填补研究空白,本研究通过比较监督 ML 技术,重点关注正确预测马来西亚智慧城市中的 PM 浓度,以减轻其不利影响。

方法

在本文中,研究了用于预测 PM 浓度的 ML 模型,使用了 2017 年至 2018 年马来西亚空气质量数据集。数据集通过数据清理和归一化过程进行预处理。接下来,在特征提取过程中,通过位置和时间因素将其减少为一个信息丰富的数据集。将数据集输入到三个监督 ML 分类器中,包括随机森林(RF)、人工神经网络(ANN)和长短期记忆(LSTM)。最后,使用混淆矩阵评估它们的输出,并进行比较,以确定用于准确预测 PM 的最佳模型。

结果

总体而言,与 ANN(61.14%)和 LSTM(61.77%)相比,RF 模型在预测 PM 时的准确率为 97.7%,实验结果表明。

讨论

与 ANN 和 LSTM 相比,RF 在具有最小特征的给定数据上表现良好。RF 能够通过使用具有最大投票的决策树从随机样本中学习,从而达到良好的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef39/9723408/0d7206b61adb/f1000research-11-76798-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验