Suppr超能文献

一种用于脑肿瘤分割的基于Transformer的生成对抗网络。

A transformer-based generative adversarial network for brain tumor segmentation.

作者信息

Huang Liqun, Zhu Enjun, Chen Long, Wang Zhaoyang, Chai Senchun, Zhang Baihai

机构信息

The School of Automation, Beijing Institute of Technology, Beijing, China.

Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

出版信息

Front Neurosci. 2022 Nov 30;16:1054948. doi: 10.3389/fnins.2022.1054948. eCollection 2022.

Abstract

Brain tumor segmentation remains a challenge in medical image segmentation tasks. With the application of transformer in various computer vision tasks, transformer blocks show the capability of learning long-distance dependency in global space, which is complementary to CNNs. In this paper, we proposed a novel transformer-based generative adversarial network to automatically segment brain tumors with multi-modalities MRI. Our architecture consists of a generator and a discriminator, which is trained in min-max game progress. The generator is based on a typical "U-shaped" encoder-decoder architecture, whose bottom layer is composed of transformer blocks with Resnet. Besides, the generator is trained with deep supervision technology. The discriminator we designed is a CNN-based network with multi-scale loss, which is proved to be effective for medical semantic image segmentation. To validate the effectiveness of our method, we conducted exclusive experiments on BRATS2015 dataset, achieving comparable or better performance than previous state-of-the-art methods. On additional datasets, including BRATS2018 and BRATS2020, experimental results prove that our technique is capable of generalizing successfully.

摘要

脑肿瘤分割在医学图像分割任务中仍然是一个挑战。随着Transformer在各种计算机视觉任务中的应用,Transformer模块展现出在全局空间中学习长距离依赖关系的能力,这与卷积神经网络(CNNs)形成互补。在本文中,我们提出了一种基于Transformer的新型生成对抗网络,用于自动分割多模态磁共振成像(MRI)中的脑肿瘤。我们的架构由一个生成器和一个判别器组成,在极小极大博弈过程中进行训练。生成器基于典型的“U形”编码器-解码器架构,其底层由带有残差网络(Resnet)的Transformer模块组成。此外,生成器采用深度监督技术进行训练。我们设计的判别器是一个基于卷积神经网络的具有多尺度损失的网络,已证明其对医学语义图像分割有效。为了验证我们方法的有效性,我们在BRATS2015数据集上进行了专门实验,取得了与先前最先进方法相当或更好的性能。在包括BRATS2018和BRATS2020在内的其他数据集上,实验结果证明我们的技术能够成功泛化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d8/9750177/907062b28ade/fnins-16-1054948-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验