Suppr超能文献

胶质瘤分割的深度学习方法、局限性及未来展望综述

A Review on Deep Learning Methods for Glioma Segmentation, Limitations, and Future Perspectives.

作者信息

Diana-Albelda Cecilia, García-Martín Álvaro, Bescos Jesus

机构信息

Video Processing and Understanding Lab, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

出版信息

J Imaging. 2025 Aug 11;11(8):269. doi: 10.3390/jimaging11080269.

Abstract

Accurate and automated segmentation of gliomas from Magnetic Resonance Imaging (MRI) is crucial for effective diagnosis, treatment planning, and patient monitoring. However, the aggressive nature and morphological complexity of these tumors pose significant challenges that call for advanced segmentation techniques. This review provides a comprehensive analysis of Deep Learning (DL) methods for glioma segmentation, with a specific focus on bridging the gap between research performance and practical clinical deployment. We evaluate over 80 state-of-the-art models published up to 2025, categorizing them into CNN-based, Pure Transformer, and Hybrid CNN-Transformer architectures. The primary objective of this paper is to critically assess these models not only on their segmentation accuracy but also on their computational efficiency and suitability for real-world medical environments by incorporating hardware resource considerations. We present a comparison of model performance on the BraTS datasets benchmark and introduce a suitability analysis for top-performing models based on their robustness, efficiency, and completeness of tumor region delineation. By identifying current trends, limitations, and key trade-offs, this review offers future research directions aimed at optimizing the balance between technical performance and clinical usability to improve diagnostic outcomes for glioma patients.

摘要

从磁共振成像(MRI)中准确、自动地分割胶质瘤对于有效的诊断、治疗规划和患者监测至关重要。然而,这些肿瘤的侵袭性和形态复杂性带来了重大挑战,需要先进的分割技术。本综述对用于胶质瘤分割的深度学习(DL)方法进行了全面分析,特别关注弥合研究性能与实际临床应用之间的差距。我们评估了截至2025年发表的80多个先进模型,将它们分为基于卷积神经网络(CNN)的、纯Transformer架构的以及混合CNN-Transformer架构的模型。本文的主要目的是不仅要严格评估这些模型的分割准确性,还要通过纳入硬件资源考量来评估它们的计算效率以及对现实医疗环境的适用性。我们展示了在BraTS数据集基准上的模型性能比较,并基于其鲁棒性、效率和肿瘤区域描绘的完整性,对表现最佳的模型进行适用性分析。通过识别当前的趋势、局限性和关键权衡,本综述提供了未来的研究方向,旨在方向,旨在优化技术性能与临床可用性之间的平衡,以改善胶质瘤患者的诊断结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a107/12387613/9143094618c7/jimaging-11-00269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验