Suppr超能文献

利用多模态神经影像学和机器学习分析确定慢性坐骨神经痛的神经标志物。

Identifying the neural marker of chronic sciatica using multimodal neuroimaging and machine learning analyses.

作者信息

Wei Xiaoya, Wang Liqiong, Yu Fangting, Lee Chihkai, Liu Ni, Ren Mengmeng, Tu Jianfeng, Zhou Hang, Shi Guangxia, Wang Xu, Liu Cun-Zhi

机构信息

International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.

Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.

出版信息

Front Neurosci. 2022 Nov 30;16:1036487. doi: 10.3389/fnins.2022.1036487. eCollection 2022.

Abstract

INTRODUCTION

Sciatica is a pain disorder often caused by the herniated disk compressing the lumbosacral nerve roots. Neuroimaging studies have identified functional abnormalities in patients with chronic sciatica (CS). However, few studies have investigated the neural marker of CS using brain structure and the classification value of multidimensional neuroimaging features in CS patients is unclear.

METHODS

Here, structural and resting-state functional magnetic resonance imaging (fMRI) was acquired for 34 CS patients and 36 matched healthy controls (HCs). We analyzed cortical surface area, cortical thickness, amplitude of low-frequency fluctuation (ALFF), regional homogeneity (REHO), between-regions functional connectivity (FC), and assessed the correlation between neuroimaging measures and clinical scores. Finally, the multimodal neuroimaging features were used to differentiate the CS patients and HC individuals by support vector machine (SVM) algorithm.

RESULTS

Compared to HC, CS patients had a larger cortical surface area in the right banks of the superior temporal sulcus and rostral anterior cingulate; higher ALFF value in the left inferior frontal gyrus; enhanced FCs between somatomotor and ventral attention network. Three FCs values were associated with clinical pain scores. Furthermore, the three multimodal neuroimaging features with significant differences between groups and the SVM algorithm could classify CS patients and HC with an accuracy of 90.00%.

DISCUSSION

Together, our findings revealed extensive reorganization of local functional properties, surface area, and network metrics in CS patients. The success of patient identification highlights the potential of using artificial intelligence and multimodal neuroimaging markers in chronic pain research.

摘要

引言

坐骨神经痛是一种疼痛性疾病,通常由椎间盘突出压迫腰骶神经根引起。神经影像学研究已发现慢性坐骨神经痛(CS)患者存在功能异常。然而,很少有研究利用脑结构来探究CS的神经标志物,且CS患者多维神经影像学特征的分类价值尚不清楚。

方法

本研究对34例CS患者和36例匹配的健康对照者(HC)进行了结构和静息态功能磁共振成像(fMRI)检查。我们分析了皮质表面积、皮质厚度、低频振幅(ALFF)、局部一致性(REHO)、区域间功能连接(FC),并评估了神经影像学指标与临床评分之间的相关性。最后,利用支持向量机(SVM)算法,通过多模态神经影像学特征对CS患者和HC个体进行区分。

结果

与HC相比,CS患者在颞上沟右岸和喙前扣带回的皮质表面积更大;左侧额下回的ALFF值更高;躯体运动和腹侧注意网络之间的FC增强。三个FC值与临床疼痛评分相关。此外,三组间具有显著差异的三个多模态神经影像学特征和SVM算法能够以90.00%的准确率对CS患者和HC进行分类。

讨论

我们的研究结果共同揭示了CS患者局部功能特性、表面积和网络指标的广泛重组。患者识别的成功突出了在慢性疼痛研究中使用人工智能和多模态神经影像学标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6141/9748090/3302f3b107df/fnins-16-1036487-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验