Hinge Christian, Henriksen Otto Mølby, Lindberg Ulrich, Hasselbalch Steen Gregers, Højgaard Liselotte, Law Ian, Andersen Flemming Littrup, Ladefoged Claes Nøhr
Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Front Neurosci. 2022 Nov 24;16:1053783. doi: 10.3389/fnins.2022.1053783. eCollection 2022.
Brain 2-Deoxy-2-[F]fluoroglucose ([F]FDG-PET) is widely used in the diagnostic workup of Alzheimer's disease (AD). Current tools for uptake analysis rely on non-personalized templates, which poses a challenge as decreased glucose uptake could reflect neuronal dysfunction, or heterogeneous brain morphology associated with normal aging. Overcoming this, we propose a deep learning method for synthesizing a personalized [F]FDG-PET baseline from the patient's own MRI, and showcase its applicability in detecting AD pathology.
We included [F]FDG-PET/MRI data from 123 patients of a local cohort and 600 patients from ADNI. A supervised, adversarial model with two connected Generative Adversarial Networks (GANs) was trained on cognitive normal (CN) patients with transfer-learning to generate full synthetic baseline volumes (sbPET) (192 × 192 × 192) which reflect healthy uptake conditioned on brain anatomy. Synthetic accuracy was measured by absolute relative %-difference (Abs%), relative %-difference (RD%), and peak signal-to-noise ratio (PSNR). Lastly, we deployed the sbPET images in a fully personalized method for localizing metabolic abnormalities.
The model achieved a spatially uniform Abs% of 9.4%, RD% of 0.5%, and a PSNR of 26.3 for CN subjects. The sbPET images conformed to the anatomical information dictated by the MRI and proved robust in presence of atrophy. The personalized abnormality method correctly mapped the pathology of AD subjects while showing little to no anomalies for CN subjects.
This work demonstrated the feasibility of synthesizing fully personalized, healthy-appearing [F]FDG-PET images. Using these, we showcased a promising application in diagnosing AD, and theorized the potential value of sbPET images in other neuroimaging routines.
脑2-脱氧-2-[F]氟葡萄糖([F]FDG-PET)广泛应用于阿尔茨海默病(AD)的诊断检查。目前用于摄取分析的工具依赖于非个性化模板,这带来了挑战,因为葡萄糖摄取减少可能反映神经元功能障碍,或与正常衰老相关的脑形态异质性。为克服这一问题,我们提出一种深度学习方法,根据患者自身的MRI合成个性化的[F]FDG-PET基线,并展示其在检测AD病理方面的适用性。
我们纳入了本地队列的123例患者以及阿尔茨海默病神经成像计划(ADNI)的600例患者的[F]FDG-PET/MRI数据。使用迁移学习对认知正常(CN)患者训练一个带有两个相连生成对抗网络(GAN)的监督对抗模型,以生成反映基于脑解剖结构的健康摄取情况的完整合成基线体积(sbPET)(192×192×192)。通过绝对相对百分比差异(Abs%)、相对百分比差异(RD%)和峰值信噪比(PSNR)来衡量合成精度。最后,我们以完全个性化的方法部署sbPET图像来定位代谢异常。
该模型对CN受试者实现了空间均匀的Abs%为9.4%、RD%为0.5%以及PSNR为26.3。sbPET图像符合MRI所显示的解剖信息,并且在存在萎缩的情况下表现出稳健性。个性化异常方法正确映射了AD受试者的病理情况,而对于CN受试者几乎未显示出异常。
这项工作证明了合成完全个性化的、看似健康的[F]FDG-PET图像的可行性。利用这些图像,我们展示了在AD诊断中的一个有前景的应用,并推测了sbPET图像在其他神经成像程序中的潜在价值。