Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France.
Acc Chem Res. 2023 Jan 3;56(1):1-12. doi: 10.1021/acs.accounts.2c00586. Epub 2022 Dec 19.
Biomembranes are ubiquitous lipid structures that delimit the cell surface and organelles and operate as platforms for a multitude of biomolecular processes. The development of chemical tools─fluorescent probes─for the sensing and imaging of biomembranes is a rapidly growing research direction, stimulated by a high demand from cell biologists and biophysicists. This Account focuses on advances in these smart molecules, providing a voyage from the cell frontier─plasma membranes (PM)─toward intracellular membrane compartments─organelles. General classification of the membrane probes can be based on , , and . Probes for PM and organelle membranes are designed based on multiple targeting principles: conjugation with or and , , and . Thus, to obtain membrane probes targeting PM with selectivity to one leaflet, we designed ligands based on a charged group and an alkyl chain. According to the sensing profile, we define with constant emission and . The markers are built from , exemplified by a series of bright cyanines and BODIPY dyes bearing the PM anchors (MemBright). Membrane probes for biophysical sensing are based on : (1) polarity-sensitive ; (2) viscosity-sensitive ; (3) mechanosensitive ; and (4) voltage-sensitive . Our solvatochromic probes based on Nile Red (NR12S, NR12A, NR4A), Laurdan (Pro12A), and 3-hydroxyflavone (F2N12S) through polarity-sensing can visualize liquid ordered and disordered phases of lipid membranes, sense lipid order and its heterogeneity in cell PM, detect apoptosis, etc. C, combining a dye, membrane-targeting ligand, and molecular recognition unit, enable the detection of pH, ions, redox species, lipids, and proteins at the biomembrane surface. In terms of the optical response profile, we can identify (1) , allowing background-free imaging; (2) , ., solvatochromic probes, which enable ratiometric imaging by changing their emission/excitation color; (3) , ., fluorescence molecular rotors and flippers, suitable for fluorescence lifetime imaging (FLIM); and (4) , important for single-molecule localization microscopy. We showed that combining solvatochromic probes with on-off switching through a reversible binding specifically to cell PM enables the mapping of their biophysical properties with superior resolution. While the majority of efforts have been focused on PM, the probes for cellular organelles, such as endoplasmic reticulum, mitochondria, Golgi apparatus, etc., emerge rapidly. Thus, nontargeted solvatochromic probes can distinguish organelles by the emission color. Targeted solvatochromic probes based on Nile Red revealed unique signatures of polarity and lipid order of individual organelles and their different sensitivities to oxidative or mechanical stress. Lipid droplets, which are membraneless lipidic structures, constitute another interesting organelle target for probing the cell stress. Currently, we stand at the beginning of a long route with big challenges ahead, in particular (1) to achieve superior organelle specificity; (2) to label specific biomembrane leaflets, notably the inner leaflet of PM; (3) to detect lipid organization in a proximity of specific proteins; and (4) to probe biomembranes in tissues and animals.
生物膜是普遍存在的脂质结构,它限定了细胞膜表面和细胞器的边界,并作为多种生物分子过程的平台。用于生物膜感应和成像的化学工具——荧光探针的发展是一个快速增长的研究方向,这是细胞生物学家和生物物理学家的高需求所推动的。本综述重点介绍了这些智能分子的进展,提供了从细胞膜前沿——质膜(PM)到细胞内膜隔室——细胞器的进展情况。膜探针的一般分类可以基于、和。用于 PM 和细胞器膜的探针是基于多种靶向原理设计的:与或结合,以及、和。因此,为了获得选择性靶向 PM 单层的膜探针,我们基于带电荷基团和烷基链设计了配体。根据感应特征,我们定义了具有恒定发射的和。标记物由构建,例如一系列带有 PM 锚定(MemBright)的亮氰基染料和 BODIPY 染料。用于生物物理感应的膜探针基于:(1)极性敏感;(2)粘度敏感;(3)机械敏感;和(4)电压敏感。我们基于尼罗红(NR12S、NR12A、NR4A)、Laurdan(Pro12A)和 3-羟基黄酮(F2N12S)的溶剂化变色探针通过极性感应能够可视化脂质膜的有序和无序相,感应细胞 PM 中的脂质有序性及其异质性,检测细胞凋亡等。C,结合染料、膜靶向配体和分子识别单元,能够在生物膜表面检测 pH 值、离子、氧化还原物种、脂质和蛋白质。根据光学响应特征,我们可以识别(1),允许无背景成像;(2),荧光团和淬灭剂,能够通过改变发射/激发颜色进行比率成像;(3),荧光分子转子和翻转器,适用于荧光寿命成像(FLIM);和(4),对于单分子定位显微镜很重要。我们表明,通过与细胞 PM 特异性可逆结合来结合溶剂化变色探针的开/关状态,可以以更高的分辨率对其生物物理特性进行映射。虽然大多数研究都集中在 PM 上,但针对内质网、线粒体、高尔基体等细胞细胞器的探针也在迅速出现。因此,非靶向溶剂化变色探针可以通过发射颜色来区分细胞器。基于尼罗红的靶向溶剂化变色探针揭示了单个细胞器的极性和脂质有序性的独特特征,以及它们对氧化或机械应激的不同敏感性。无膜脂质结构的脂滴是另一个有趣的细胞器靶标,用于探测细胞应激。目前,我们正处于漫长道路的起点,前方还有很大的挑战,特别是(1)实现更好的细胞器特异性;(2)标记 PM 的特定膜层,特别是 PM 的内层;(3)在特定蛋白质的临近处检测脂质组织;和(4)在组织和动物中探测生物膜。