Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
J Colloid Interface Sci. 2023 Mar 15;634:110-120. doi: 10.1016/j.jcis.2022.12.032. Epub 2022 Dec 11.
In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisindane-based intrinsically microporous poly(ether ketone) (PEK-SBI). The formation of phase separated structures as a result of the incompatibility between the hydrophilic PBP network and the hydrophobic PEK-SBI segment, has successfully promoted the hydroxide ion conductivity of AEMs. A swelling ratio (SR) as low as 12.2 % at 80 °C was recorded for the sIPN containing hydrophobic PEK-SBI as the linear polymer and crosslinked structure with a mass ratio of PBP to PEK-SBI of 90/10 (sIPN-90/10). The sIPN-90/10 AEM achieved the highest hydroxide ion conductivity of 122.4 mS cm at 80 °C and a recorded ion exchange capacity (IEC) of 2.26 meq g. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) clearly revealed the improved phase separation structure of sIPN-90/10. N adsorption isotherm indicated that the Brunauer-Emmett-Teller (BET) surface area of the AEMs increased with the increase of microporous PEK-SBI content. Interestingly, the sIPN-90/10 AEM showed good alkaline stability for being able to maintain a conductivity of 94.7 % despite being soaked in a 1 M sodium hydroxide solution at 80 °C for 30 days. Meanwhile, a peak power density of 481 mW cm can be achieved by the hydrogen/oxygen single cell using sIPN-90/10 as the AEM.
为了实现高离子电导率和改善化学稳定性,通过引入交联的聚(联苯 N-甲基哌啶)(PBP)和基于螺双茚满的本征微孔聚(醚酮)(PEK-SBI),制备了一系列具有半互穿聚合物网络(sIPN)的阴离子交换膜(AEM)。由于亲水性 PBP 网络与疏水性 PEK-SBI 段之间的不兼容性,形成了相分离结构,成功地提高了 AEM 的氢氧根离子电导率。对于含有疏水性 PEK-SBI 作为线性聚合物和交联结构的 sIPN,其溶胀率(SR)在 80°C 时低至 12.2%,其质量比为 PBP 与 PEK-SBI 的 90/10(sIPN-90/10)。sIPN-90/10 AEM 在 80°C 时实现了 122.4 mS cm 的最高氢氧根离子电导率和记录的离子交换容量(IEC)为 2.26 meq g。原子力显微镜(AFM)和透射电子显微镜(TEM)清楚地揭示了 sIPN-90/10 的改进相分离结构。氮气吸附等温线表明,AEM 的 Brunauer-Emmett-Teller(BET)表面积随着微孔 PEK-SBI 含量的增加而增加。有趣的是,sIPN-90/10 AEM 表现出良好的碱性稳定性,尽管在 80°C 的 1 M 氢氧化钠溶液中浸泡 30 天,但其电导率仍能保持 94.7%。同时,使用 sIPN-90/10 作为 AEM,氢/氧单电池可以实现 481 mW cm 的峰值功率密度。