Yang Qian, Cai Yuan Yuan, Zhu Zhao Yu, Sun Li Xuan, Choo Yvonne Shuen Lann, Zhang Qiu Gen, Zhu Ai Mei, Liu Qing Lin
Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor Darul Ehsan, Malaysia.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):24806-24816. doi: 10.1021/acsami.0c05411. Epub 2020 May 22.
The development of anion exchange membranes (AEMs) is hindered by the trade-off of ionic conductivity, alkaline stability, and mechanical properties. Tröger's base polymers (Tb-polymers) are recognized as promising membrane materials to overcome these obstacles. Herein, the AEMs made from Tb-poly(crown ether)s (Tb-PCEs) show good comprehensive performance. The influence of crown ether on the conductivity and alkaline stability of AEMs has been investigated in detail. The formation of hydronium ion-crown ether complexes and an obvious microphase-separated structure formed by the existence of crown ether can enhance the conductivity of the AEMs. The maximum OH conductivity of 141.5 mS cm is achieved from the Tb-PCEs based AEM (Tb-PCE-1) at 80 °C in ultrapure water. The ion-dipole interaction of the Na with crown ether can protect the quaternary ammonium from the attack of OH to improve the alkaline stability of AEMs. After 675 h of alkaline treatment, the OH conductivity of Tb-PCE-1 decreases by only 6%. The Tb-PCE-1-based single cell shows a peak power density of 0.202 W cm at 80 °C. The prominent physicochemical properties are attributed to the well-developed microstructure of the Tb-PCEs, as revealed by TEM, AFM, and SAXS observations.
阴离子交换膜(AEMs)的发展受到离子电导率、碱性稳定性和机械性能之间权衡的阻碍。特罗格碱聚合物(Tb-聚合物)被认为是克服这些障碍的有前途的膜材料。在此,由Tb-聚(冠醚)(Tb-PCEs)制成的AEMs表现出良好的综合性能。详细研究了冠醚对AEMs电导率和碱性稳定性的影响。水合氢离子-冠醚配合物的形成以及冠醚的存在形成的明显微相分离结构可以提高AEMs的电导率。基于Tb-PCEs的AEM(Tb-PCE-1)在80℃的超纯水中实现了141.5 mS cm的最大OH电导率。Na与冠醚的离子-偶极相互作用可以保护季铵免受OH的攻击,从而提高AEMs的碱性稳定性。经过675小时的碱性处理后,Tb-PCE-1的OH电导率仅下降6%。基于Tb-PCE-1的单电池在80℃时显示出0.202 W cm的峰值功率密度。如TEM、AFM和SAXS观察所示,突出的物理化学性质归因于Tb-PCEs发达的微观结构。