Suppr超能文献

UNMIX-ME:通过深度学习实现光谱和寿命荧光解混

UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.

作者信息

Smith Jason T, Ochoa Marien, Intes Xavier

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

These authors contributed equally.

出版信息

Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.

Abstract

Hyperspectral fluorescence lifetime imaging allows for the simultaneous acquisition of spectrally resolved temporal fluorescence emission decays. In turn, the acquired rich multidimensional data set enables simultaneous imaging of multiple fluorescent species for a comprehensive molecular assessment of biotissues. However, to enable quantitative imaging, inherent spectral overlap between the considered fluorescent probes and potential bleed-through must be considered. Such a task is performed via either spectral or lifetime unmixing, typically independently. Herein, we present "UNMIX-ME" (unmix multiple emissions), a deep learning-based fluorescence unmixing routine, capable of quantitative fluorophore unmixing by simultaneously using both spectral and temporal signatures. UNMIX-ME was trained and validated using an framework replicating the data acquisition process of a compressive hyperspectral fluorescent lifetime imaging platform (HMFLI). It was benchmarked against a conventional LSQ method for tri and quadri-exponential simulated samples. Last, UNMIX-ME's potential was assessed for NIR FRET and preclinical applications.

摘要

高光谱荧光寿命成像允许同时采集光谱分辨的时间荧光发射衰减。相应地,所获取的丰富多维数据集能够对多种荧光物质进行同时成像,以对生物组织进行全面的分子评估。然而,为了实现定量成像,必须考虑所考虑的荧光探针之间固有的光谱重叠以及潜在的串扰。这样的任务通常通过光谱或寿命解混独立执行。在此,我们提出了“UNMIX-ME”(解混多种发射),这是一种基于深度学习的荧光解混程序,能够通过同时使用光谱和时间特征进行定量荧光团解混。“UNMIX-ME”使用一个复制压缩高光谱荧光寿命成像平台(HMFLI)数据采集过程的框架进行训练和验证。它针对用于三指数和四指数模拟样本的传统最小二乘法进行了基准测试。最后,评估了“UNMIX-ME”在近红外荧光共振能量转移和临床前应用方面的潜力。

相似文献

1
UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.
7
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
8
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
9
Deep Learning for Fluorescence Lifetime Predictions Enables High-Throughput In Vivo Imaging.
J Am Chem Soc. 2025 Jul 2;147(26):22609-22621. doi: 10.1021/jacs.5c03749. Epub 2025 Jun 14.

引用本文的文献

1
Phasor and neural network approaches for rapid fluorophore fraction analysis in temporal-spectral multiplexed data.
J Biomed Opt. 2025 Sep;30(9):095001. doi: 10.1117/1.JBO.30.9.095001. Epub 2025 Sep 8.
2
Live-cell imaging powered by computation.
Nat Rev Mol Cell Biol. 2024 Jun;25(6):443-463. doi: 10.1038/s41580-024-00702-6. Epub 2024 Feb 20.
3
5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review.
Front Neurosci. 2024 Jan 29;18:1310282. doi: 10.3389/fnins.2024.1310282. eCollection 2024.
4
BINGO: a blind unmixing algorithm for ultra-multiplexing fluorescence images.
Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae052.
5
AutoUnmix: an autoencoder-based spectral unmixing method for multi-color fluorescence microscopy imaging.
Biomed Opt Express. 2023 Aug 22;14(9):4814-4827. doi: 10.1364/BOE.498421. eCollection 2023 Sep 1.
6
Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques.
Photoacoustics. 2023 Aug 16;33:100544. doi: 10.1016/j.pacs.2023.100544. eCollection 2023 Oct.
7
Two-Photon Imaging for Non-Invasive Corneal Examination.
Sensors (Basel). 2022 Dec 11;22(24):9699. doi: 10.3390/s22249699.
8
Computational macroscopic lifetime imaging and concentration unmixing of autofluorescence.
J Biophotonics. 2022 Dec;15(12):e202200133. doi: 10.1002/jbio.202200133. Epub 2022 Aug 13.
9
Suppression of natural lens fluorescence in fundus autofluorescence measurements: review of hardware solutions.
Biomed Opt Express. 2022 Sep 7;13(10):5151-5170. doi: 10.1364/BOE.462559. eCollection 2022 Oct 1.
10
and NIR fluorescence lifetime imaging with a time-gated SPAD camera.
Optica. 2022 May;9(5):532-544. doi: 10.1364/OPTICA.454790. Epub 2022 May 9.

本文引用的文献

1
High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging .
Biomed Opt Express. 2020 Sep 2;11(10):5401-5424. doi: 10.1364/BOE.396771. eCollection 2020 Oct 1.
2
QuanTI-FRET: a framework for quantitative FRET measurements in living cells.
Sci Rep. 2020 Apr 16;10(1):6504. doi: 10.1038/s41598-020-62924-w.
3
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.
4
Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
Light Sci Appl. 2019 Mar 6;8:26. doi: 10.1038/s41377-019-0138-x. eCollection 2019.
6
Quantitative imaging of receptor-ligand engagement in intact live animals.
J Control Release. 2018 Sep 28;286:451-459. doi: 10.1016/j.jconrel.2018.07.032. Epub 2018 Jul 20.
7
Using in vivo fluorescence lifetime imaging to detect HER2-positive tumors.
EJNMMI Res. 2018 Apr 4;8(1):26. doi: 10.1186/s13550-018-0384-6.
8
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging.
Nat Photonics. 2017;11:411-414. doi: 10.1038/NPHOTON.2017.82. Epub 2017 Jun 5.
9
Multi-target spectrally resolved fluorescence lifetime imaging microscopy.
Nat Methods. 2016 Mar;13(3):257-62. doi: 10.1038/nmeth.3740. Epub 2016 Jan 25.
10
FLIM-FRET for Cancer Applications.
Curr Mol Imaging. 2014;3(2):144-161. doi: 10.2174/2211555203666141117221111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验