Smith Jason T, Ochoa Marien, Intes Xavier
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
These authors contributed equally.
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.
Hyperspectral fluorescence lifetime imaging allows for the simultaneous acquisition of spectrally resolved temporal fluorescence emission decays. In turn, the acquired rich multidimensional data set enables simultaneous imaging of multiple fluorescent species for a comprehensive molecular assessment of biotissues. However, to enable quantitative imaging, inherent spectral overlap between the considered fluorescent probes and potential bleed-through must be considered. Such a task is performed via either spectral or lifetime unmixing, typically independently. Herein, we present "UNMIX-ME" (unmix multiple emissions), a deep learning-based fluorescence unmixing routine, capable of quantitative fluorophore unmixing by simultaneously using both spectral and temporal signatures. UNMIX-ME was trained and validated using an framework replicating the data acquisition process of a compressive hyperspectral fluorescent lifetime imaging platform (HMFLI). It was benchmarked against a conventional LSQ method for tri and quadri-exponential simulated samples. Last, UNMIX-ME's potential was assessed for NIR FRET and preclinical applications.
高光谱荧光寿命成像允许同时采集光谱分辨的时间荧光发射衰减。相应地,所获取的丰富多维数据集能够对多种荧光物质进行同时成像,以对生物组织进行全面的分子评估。然而,为了实现定量成像,必须考虑所考虑的荧光探针之间固有的光谱重叠以及潜在的串扰。这样的任务通常通过光谱或寿命解混独立执行。在此,我们提出了“UNMIX-ME”(解混多种发射),这是一种基于深度学习的荧光解混程序,能够通过同时使用光谱和时间特征进行定量荧光团解混。“UNMIX-ME”使用一个复制压缩高光谱荧光寿命成像平台(HMFLI)数据采集过程的框架进行训练和验证。它针对用于三指数和四指数模拟样本的传统最小二乘法进行了基准测试。最后,评估了“UNMIX-ME”在近红外荧光共振能量转移和临床前应用方面的潜力。