Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland.
ACS Nano. 2023 Jan 10;17(1):275-287. doi: 10.1021/acsnano.2c07558. Epub 2022 Dec 22.
The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals mediation by citrate counterions. ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap" requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities.
小分子或离子驱动的纳米颗粒自组装可能产生具有类似于金属或半导体的特征和性能的胶体超晶格。然而,这种超分子晶体的性质在多大程度上实际上类似于原子材料仍然不清楚。在这里,我们通过粗粒化分子模拟明确展示了胶体超晶格中如何出现类似于半导体的行为。作为一个案例研究,我们专注于带有正电荷基团的金纳米颗粒,这些纳米颗粒在柠檬酸根离子的介导下自组装成 FCC 晶体。欧姆实验表明,不同超晶格域中离子的动态多样行为如何允许在施加的电场超过一定水平时打开导电离子门。观察到的二元导电/非导电行为类似于传统半导体,而在超分子水平上,跨越“带隙”需要足够的静电刺激来打破分子间相互作用,使离子在超晶格的腔体内扩散。