Zhou Yu, Shaukat Ahmed, Seitsonen Jani, Rigoni Carlo, Timonen Jaakko V I, Kostiainen Mauri A
Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, 00076, Finland.
School of Biological and Biomedical Sciences, Durham University, Durham, DH13LE, UK.
Adv Sci (Weinh). 2024 Dec;11(45):e2408416. doi: 10.1002/advs.202408416. Epub 2024 Oct 14.
Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge. Here, the co-crystallization of two different protein cages (cowpea chlorotic mottle virus and ferritin) characterized by opposing surface charges and unequal diameter is shown. Precise tuning of the electrostatic attraction between the cages enabled the preparation of binary crystals with dimensions up to several tens of micrometers. Additionally, binary metal nanoparticle superlattices are achieved by loading gold and iron oxide nanoparticles inside the cavities of the protein cages. The resulting structure adopts an AB configuration that also impacts the dipolar coupling between the particles and hence the optical properties of the crystals, providing key insight for the future preparation of plasmonic and magnetic nanoparticle metamaterials.
无机纳米粒子可以组装成具有独特光学和磁学性质的超晶格,这些性质源于集体行为。蛋白质笼可以通过包裹纳米粒子并促进它们组装成有序结构来引导这种组装过程。然而,创建具有不同蛋白质笼类型和尺寸的有序多组分结构仍然是一个挑战。在此,展示了两种具有相反表面电荷和不等直径的不同蛋白质笼(豇豆褪绿斑驳病毒和铁蛋白)的共结晶。对笼子之间静电吸引力的精确调节使得能够制备尺寸达几十微米的二元晶体。此外,通过将金和氧化铁纳米粒子负载到蛋白质笼的腔内,实现了二元金属纳米粒子超晶格。所得结构采用AB构型,这也影响了粒子之间的偶极耦合,从而影响了晶体的光学性质,为未来制备等离子体和磁性纳米粒子超材料提供了关键见解。