Suppr超能文献

通过对缺陷进行无监督机器学习来对软自组装材料进行分类。

Classifying soft self-assembled materials via unsupervised machine learning of defects.

作者信息

Gardin Andrea, Perego Claudio, Doni Giovanni, Pavan Giovanni M

机构信息

Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.

Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.

出版信息

Commun Chem. 2022 Jul 14;5(1):82. doi: 10.1038/s42004-022-00699-z.

Abstract

Unlike molecular crystals, soft self-assembled fibers, micelles, vesicles, etc., exhibit a certain order in the arrangement of their constitutive monomers but also high structural dynamicity and variability. Defects and disordered local domains that continuously form-and-repair in their structures impart to such materials unique adaptive and dynamical properties, which make them, e.g., capable to communicate with each other. However, objective criteria to compare such complex dynamical features and to classify soft supramolecular materials are non-trivial to attain. Here we show a data-driven workflow allowing us to achieve this goal. Building on unsupervised clustering of Smooth Overlap of Atomic Position (SOAP) data obtained from equilibrium molecular dynamics simulations, we can compare a variety of soft supramolecular assemblies via a robust SOAP metric. This provides us with a data-driven "defectometer" to classify different types of supramolecular materials based on the structural dynamics of the ordered/disordered local molecular environments that statistically emerge within them.

摘要

与分子晶体不同,柔软的自组装纤维、胶束、囊泡等,其组成单体的排列呈现出一定的有序性,但同时也具有高度的结构动态性和变异性。在其结构中不断形成和修复的缺陷及无序局部区域赋予了这类材料独特的适应性和动态特性,例如使它们能够相互通信。然而,要获得用于比较此类复杂动态特征并对软超分子材料进行分类的客观标准并非易事。在此,我们展示了一种数据驱动的工作流程,使我们能够实现这一目标。基于从平衡分子动力学模拟获得的原子位置平滑重叠(SOAP)数据的无监督聚类,我们可以通过稳健的SOAP指标比较各种软超分子组装体。这为我们提供了一个数据驱动的“缺陷仪”,用于根据在其中统计出现的有序/无序局部分子环境的结构动态对不同类型的超分子材料进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51e/9814741/8a2b60284bf4/42004_2022_699_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验