State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China.
Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
Biomaterials. 2023 Feb;293:121970. doi: 10.1016/j.biomaterials.2022.121970. Epub 2022 Dec 16.
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@CuS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective CuS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of CuS. The semiconductor of CuS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e/h) pair for a promoted US-triggered singlet oxygen (O) generation, in the presence of Au as electron scavenger. Moreover, CuS is devote to Fenton-like reaction to catalyze HO into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and O yield can be enhanced by CuS-catalyzed O self-replenishment in HO-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
细胞内氧化还原稳态失调是由肿瘤微环境(TME)调节引起的,已成为癌症治疗的一个有吸引力的治疗靶点。在此,通过将具有缺陷的硫化铜纳米点共价固定在丝素(SF)包裹的金纳米颗粒表面,精心开发了一种双等离子体 Au/SF@CuS 纳米反应器(缩写为 ASC)。由于 CuS 的新发现的类过氧化物酶活性,ASC 介导的局部供氧可以有效缓解肿瘤缺氧。具有 2.54 eV 窄带隙能量的半导体 CuS 能够更快速地分离电子-空穴(e/h)对,以促进超声触发的单线态氧(O)生成,Au 作为电子捕获剂。此外,CuS 致力于芬顿样反应,在温和的酸度下催化 HO 生成·OH,并同时耗竭谷胱甘肽以加剧细胞内氧化应激。另一方面,具有葡萄糖氧化酶模拟活性的 Au 纳米颗粒消耗内源性葡萄糖,导致癌细胞的氧化损伤和能量耗竭程度更高。重要的是,在富含 HO 的 TME 中,CuS 催化的 O 自补充可以增强这种肿瘤饥饿和 O 产量。ASC 引发的 M1 巨噬细胞激活和治疗引发的免疫遗传细胞死亡(ICD)通过引发抗肿瘤免疫有利于系统地消除肿瘤。这项研究无疑丰富了基于 SF 的纳米催化剂在医疗应用中的合理设计。
Front Pharmacol. 2025-2-12
J Nanobiotechnology. 2024-9-28
ACS Omega. 2024-3-26