School of Materials and Energy, Southwest University, Chongqing, 400715, China.
Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Adv Sci (Weinh). 2024 Sep;11(34):e2406683. doi: 10.1002/advs.202406683. Epub 2024 Jul 10.
Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFeO nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of HO. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from HO. On the other hand, energy band structure CFAP is superior for US-actuated O generation, relying on the enhanced separation and retarded recombination of e/h pairs. In addition, catalase-mimic CFAP can react with cytosolic HO to generate molecular oxygen, which may increase the product yields from O-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.
鉴于肿瘤微环境(TME)对治疗反应和临床结果有不利影响,强大的 TME 调节剂可能显著改善癌症患者的治疗效果并增加生存获益。在这里,开发了具有聚乙二醇化(CFAP)的 Au 纳米点锚定的 CoFeO 纳米花以响应 TME 线索,旨在在超声(US)照射下加剧氧化还原失衡,以进行有效的抗肿瘤治疗。在被肿瘤细胞摄取后,具有葡萄糖氧化酶(GOx)样活性的 CFAP 可以促进葡萄糖耗竭并促进 HO 的产生。CFAP 中的 Co(II)/Co(III)和 Fe(II)/Fe(III)多价元素显示出从 HO 产生·OH 的强类 Fenton 活性。另一方面,CFAP 的能带结构有利于 US 驱动的 O 生成,这依赖于 e/h 对的增强分离和延迟重组。此外,CFAP 可以像过氧化氢酶一样与细胞质中的 HO 反应生成分子氧,这可能会增加 O 消耗反应(如葡萄糖氧化和声敏化过程)的产物产量。除了大量产生活性氧外,CFAP 还能够耗尽谷胱甘肽来破坏细胞内氧化还原平衡。CFAP 能够引发严重的免疫原性细胞死亡并有效抑制实体瘤,这表明这种异质结构具有临床潜力,并可能激发更多针对疾病治疗的相关设计。