Suppr超能文献

小球藻与碱木质素在碳酸钾浸渍下的共热解用于双酚A增塑剂的协同吸附

Copyrolysis of microalga Chlorella sp. and alkali lignin with potassium carbonate impregnation for synergistic Bisphenol A plasticizer adsorption.

作者信息

Marrakchi F, Wei Manman, Cao Bin, Yuan Chuan, Chen Hao, Wang Shuang

机构信息

School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China; AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark.

School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China.

出版信息

Int J Biol Macromol. 2023 Feb 15;228:808-815. doi: 10.1016/j.ijbiomac.2022.12.207. Epub 2022 Dec 20.

Abstract

Composite functional materials offer promising opportunities for the development of tailored adsorbents with enhanced bioremediation potential towards toxic, carcinogenic endocrine disrupters such as Bisphenol A (BPA). Copyrolysis of microalga Chlorella sp. (CH) alkali lignin (L) with KCO impregnation yielded a carbon-based composite (CHL-AC) with a micro-mesoporous structure of 0.643 cm/g, surface area of 1414 m/g, and BPA adsorption capacity of Q 316.858 mg/g. Enhanced BPA removal efficiency indicated a positive synergistic effect upon a combination of L and CH, resulting in a 73.24 % removal efficiency compared with the individual carbon components of 52.33 % for L-AC and 67.35 % for CH-AC. The kinetics and equilibrium results were described well by the pseudo second-order kinetic model and Freundlich isotherm, respectively. This paper elucidates the blending of microalgae and lignin into high-value carbon composite material, CHL-AC, with immense potential for the treatment of BPA-contaminated waters to contribute to Goal 6 (clean water and sanitation).

摘要

复合功能材料为开发定制吸附剂提供了广阔的机会,这些吸附剂对双酚A(BPA)等有毒、致癌的内分泌干扰物具有更强的生物修复潜力。用碳酸钾浸渍微藻小球藻(CH)和碱木质素(L)进行共热解,得到了一种具有微介孔结构、比表面积为1414 m²/g、BPA吸附容量为Q 316.858 mg/g的碳基复合材料(CHL-AC)。BPA去除效率的提高表明L和CH组合时具有正协同效应,与单独的碳组分相比,去除效率提高,L-AC的去除效率为52.33%,CH-AC的去除效率为67.35%,而CHL-AC的去除效率为73.24%。动力学和平衡结果分别用伪二级动力学模型和Freundlich等温线很好地描述。本文阐明了将微藻和木质素混合制成高价值碳复合材料CHL-AC,该材料在处理受BPA污染的水体方面具有巨大潜力,有助于实现目标6(清洁饮水和卫生设施)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验