Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
Graduate School of Natural and Applied Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
Biodegradation. 2023 Jun;34(3):263-281. doi: 10.1007/s10532-023-10024-7. Epub 2023 Feb 21.
Tramates trogii biomass was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1-4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were - 20.7 and - 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (Daphnia magna), (ii) a freshwater algae (Chlamydomonas reinhardti), and (iii) a Turkish winter wheat seed (Triticum aestivum L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.
曲霉菌生物质通过与 Fe(III)离子(即 Fe(III)-CMC@Lig(1-4)@FB)交联固定在羧甲基纤维素-木质素复合珠中。将复合珠制剂用于吸附和降解双酚 A(BPA),并将游离真菌生物质作为对照体系。游离真菌生物质和 Fe(III)-CMC@Lig-3@FB 对 BPA 的最大吸附容量分别为 57.8 和 95.6mg/g。在批式反应器中,游离真菌生物质和 Fe(III)-CMC@Lig-3@FB 分别在 72 小时内将 BPA 的降解率分别提高到 87.8%和 89.6%。BPA 在游离真菌生物质和 Fe(III)-CMC@Lig-3@FB 真菌制剂上的吸附分别由 Langmuir 和 Temkin 等温线模型和拟二级动力学模型描述。在 298 K 时,BPA 在游离真菌生物质和 Fe(III)-CMC@Lig-3@FB 珠上的吸附自由能(ΔG°)分别为-20.7 和-25.8 kJ/mol。此外,使用三种不同的测试生物评估了 BPA 和降解产物的毒性:(i)淡水浮游甲壳类动物(大型溞),(ii)淡水藻类(莱茵衣藻)和(iii)土耳其冬小麦种子(普通小麦)。在用 Fe(III)-CMC@Lig-3@FB 制剂处理后,与纯 BPA 相比,降解产物没有任何明显的毒性作用。这项工作表明,所制备的复合生物活性系统具有从水介质中高效降解 BPA 而不产生有毒终产物的潜力。因此,它可能是一种环境安全的生物方法的良好候选物。