Suppr超能文献

利用人工智能对矫形外科手术单元下肢骨折进行预测分析:以 Ruggi AOU 为例

Predictive analysis of lower limb fractures in the orthopedic complex operative unit using artificial intelligence: the case study of AOU Ruggi.

机构信息

Department of Public Health, University of Naples "Federico II", Naples, Italy.

San Giovanni di Dio e Ruggi d'Aragona" University Hospital, Salerno, Italy.

出版信息

Sci Rep. 2022 Dec 22;12(1):22153. doi: 10.1038/s41598-022-26667-0.

Abstract

The length of stay (LOS) in hospital is one of the main parameters for evaluating the management of a health facility, of its departments in relation to the different specializations. Healthcare costs are in fact closely linked to this parameter as well as the profit margin. In the orthopedic field, the provision of this parameter is increasingly complex and of fundamental importance in order to be able to evaluate the planning of resources, the waiting times for any scheduled interventions and the management of the department and related surgical interventions. The purpose of this work is to predict and evaluate the LOS value using machine learning methods and applying multiple linear regression, starting from clinical data of patients hospitalized with lower limb fractures. The data were collected at the "San Giovanni di Dio e Ruggi d'Aragona" hospital in Salerno (Italy).

摘要

住院时间(LOS)是评估医疗机构、其与不同专业相关部门管理的主要参数之一。医疗保健成本实际上与该参数以及利润率密切相关。在骨科领域,提供该参数的工作变得越来越复杂,对于评估资源规划、任何预定干预的等待时间以及部门和相关手术干预的管理至关重要。这项工作的目的是使用机器学习方法并应用多元线性回归来预测和评估 LOS 值,这些方法基于在意大利萨莱诺的“San Giovanni di Dio e Ruggi d'Aragona”医院住院的下肢骨折患者的临床数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a548/9780352/ff29c322d9e6/41598_2022_26667_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验