Suppr超能文献

基于机器学习的下肢风险评估工具的特征选择和验证:一项可行性研究。

Feature Selection and Validation of a Machine Learning-Based Lower Limb Risk Assessment Tool: A Feasibility Study.

机构信息

Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan.

School of Computing, Informatics & Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA.

出版信息

Sensors (Basel). 2021 Sep 27;21(19):6459. doi: 10.3390/s21196459.

Abstract

Early and self-identification of locomotive degradation facilitates us with awareness and motivation to prevent further deterioration. We propose the usage of nine squat and four one-leg standing exercise features as input parameters to Machine Learning (ML) classifiers in order to perform lower limb skill assessment. The significance of this approach is that it does not demand manpower and infrastructure, unlike traditional methods. We base the output layer of the classifiers on the Short Test Battery Locomotive Syndrome (STBLS) test used to detect Locomotive Syndrome (LS) approved by the Japanese Orthopedic Association (JOA). We obtained three assessment scores by using this test, namely sit-stand, 2-stride, and Geriatric Locomotive Function Scale (GLFS-25). We tested two ML methods, namely an Artificial Neural Network (ANN) comprised of two hidden layers with six nodes per layer configured with Rectified-Linear-Unit (ReLU) activation function and a Random Forest (RF) regressor with number of estimators varied from 5 to 100. We could predict the stand-up and 2-stride scores of the STBLS test with correlation of 0.59 and 0.76 between the real and predicted data, respectively, by using the ANN. The best accuracies (R-squared values) obtained through the RF regressor were 0.86, 0.79, and 0.73 for stand-up, 2-stride, and GLFS-25 scores, respectively.

摘要

早期识别运动功能下降有助于我们提高认识并增强预防运动功能进一步恶化的动力。我们提出使用九项深蹲和四项单腿站立运动特征作为输入参数,供机器学习 (ML) 分类器使用,以进行下肢技能评估。这种方法的意义在于,它不需要人力和基础设施,这与传统方法不同。我们将分类器的输出层基于日本骨科协会 (JOA) 批准的用于检测运动综合征 (LS) 的短程运动功能测试电池 (STBLS) 测试。我们使用该测试获得了三个评估分数,即坐立-站立、两步和老年运动功能量表 (GLFS-25)。我们测试了两种 ML 方法,即具有两层隐藏层的人工神经网络 (ANN),每层有六个节点,配置有修正线性单元 (ReLU) 激活函数,以及具有从 5 到 100 个估计器数量的随机森林 (RF) 回归器。我们可以使用 ANN 分别预测 STBLS 测试的站立和两步评分,真实数据和预测数据之间的相关性分别为 0.59 和 0.76。通过 RF 回归器获得的最佳准确性(R 平方值)分别为 0.86、0.79 和 0.73,用于站立、两步和 GLFS-25 评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b7/8512098/ad48b25d4520/sensors-21-06459-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验