Suppr超能文献

用于股骨骨折患者管理的分类算法。

The classification algorithms to support the management of the patient with femur fracture.

机构信息

Department of Public Health, University of Naples "Federico II", Naples, Italy.

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.

出版信息

BMC Med Res Methodol. 2024 Jul 16;24(1):150. doi: 10.1186/s12874-024-02276-5.

Abstract

Effectiveness in health care is a specific characteristic of each intervention and outcome evaluated. Especially with regard to surgical interventions, organization, structure and processes play a key role in determining this parameter. In addition, health care services by definition operate in a context of limited resources, so rationalization of service organization becomes the primary goal for health care management. This aspect becomes even more relevant for those surgical services for which there are high volumes. Therefore, in order to support and optimize the management of patients undergoing surgical procedures, the data analysis could play a significant role. To this end, in this study used different classification algorithms for characterizing the process of patients undergoing surgery for a femoral neck fracture. The models showed significant accuracy with values of 81%, and parameters such as Anaemia and Gender proved to be determined risk factors for the patient's length of stay. The predictive power of the implemented model is assessed and discussed in view of its capability to support the management and optimisation of the hospitalisation process for femoral neck fracture, and is compared with different model in order to identify the most promising algorithms. In the end, the support of artificial intelligence algorithms laying the basis for building more accurate decision-support tools for healthcare practitioners.

摘要

医疗保健的有效性是每个评估的干预措施和结果的特定特征。特别是对于外科手术干预,组织、结构和流程在确定这一参数方面起着关键作用。此外,医疗保健服务的定义是在资源有限的情况下运作的,因此服务组织的合理化成为医疗保健管理的首要目标。对于那些手术量较大的手术服务来说,这一方面变得更加重要。因此,为了支持和优化接受手术的患者的管理,数据分析可以发挥重要作用。为此,在这项研究中,使用了不同的分类算法来描述股骨颈骨折患者的手术过程。这些模型的准确率高达 81%,并且贫血和性别等参数被证明是影响患者住院时间的决定因素。考虑到该模型支持股骨颈骨折住院过程管理和优化的能力,对所实现模型的预测能力进行了评估和讨论,并与不同的模型进行了比较,以确定最有前途的算法。最终,人工智能算法的支持为医疗保健从业者构建更准确的决策支持工具奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f58/11251118/49a8d8f7488f/12874_2024_2276_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验