Suppr超能文献

混杂因素介导医学影像中人工智能对人口统计学特征的预测。

Confounders mediate AI prediction of demographics in medical imaging.

作者信息

Duffy Grant, Clarke Shoa L, Christensen Matthew, He Bryan, Yuan Neal, Cheng Susan, Ouyang David

机构信息

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.

出版信息

NPJ Digit Med. 2022 Dec 22;5(1):188. doi: 10.1038/s41746-022-00720-8.

Abstract

Deep learning has been shown to accurately assess "hidden" phenotypes from medical imaging beyond traditional clinician interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding variables. Using a total of 433,469 videos from Cedars-Sinai Medical Center and 99,909 videos from Stanford Medical Center, we trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI model predicted sex with an AUC of 0.85 (95% CI 0.84-0.86), age with a mean absolute error of 9.12 years (95% CI 9.00-9.25), and race with AUCs ranging from 0.63 to 0.71. When predicting race, we show that tuning the proportion of confounding variables (age or sex) in the training data significantly impacts model AUC (ranging from 0.53 to 0.85), while sex and age prediction was not particularly impacted by adjusting race proportion in the training dataset AUC of 0.81-0.83 and 0.80-0.84, respectively. This suggests significant proportion of AI's performance on predicting race could come from confounding features being detected. Further work remains to identify the particular imaging features that associate with demographic information and to better understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.

摘要

深度学习已被证明能够超越传统临床医生的解读,从医学影像中准确评估“隐藏”的表型。利用来自两个医疗系统的大型超声心动图数据集,我们测试了使用深度学习算法从心脏超声图像预测年龄、种族和性别的可能性,并评估了不同混杂变量的影响。我们使用了来自雪松西奈医疗中心的433469个视频和斯坦福医疗中心的99909个视频,训练了基于视频的卷积神经网络来预测年龄、性别和种族。我们发现深度学习模型能够识别年龄和性别,但无法可靠地预测种族。在不考虑类别之间的混杂差异的情况下,人工智能模型预测性别的AUC为0.85(95%CI 0.84-0.86),预测年龄的平均绝对误差为9.12岁(95%CI 9.00-9.25),预测种族的AUC范围为0.63至0.71。在预测种族时,我们表明调整训练数据中混杂变量(年龄或性别)的比例会显著影响模型AUC(范围为0.53至0.85),而在训练数据集中调整种族比例对性别和年龄预测的影响并不特别显著,性别预测的AUC分别为0.81-0.83,年龄预测的AUC为0.80-0.84。这表明人工智能在预测种族方面的表现有很大一部分可能来自于检测到的混杂特征。进一步的工作仍需确定与人口统计学信息相关的特定成像特征,并更好地理解医学人工智能中人口统计学识别的风险,因为这可能会延续潜在的偏见和差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a299/9780355/8395559b49c8/41746_2022_720_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验