Suppr超能文献

基于深度学习增强型超声心动图的慢性肝病机会性筛查

Opportunistic Screening of Chronic Liver Disease with Deep Learning Enhanced Echocardiography.

作者信息

Sahashi Yuki, Vukadinovic Milos, Amrollahi Fatemeh, Trivedi Hirsh, Rhee Justin, Chen Jonathan, Cheng Susan, Ouyang David, Kwan Alan C

机构信息

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.

Department of Bioengineering, University of California Los Angeles, Los Angeles, CA.

出版信息

medRxiv. 2024 Jun 14:2024.06.13.24308898. doi: 10.1101/2024.06.13.24308898.

Abstract

IMPORTANCE

Chronic liver disease affects more than 1.5 billion adults worldwide, however the majority of cases are asymptomatic and undiagnosed. Echocardiography is broadly performed and visualizes the liver; but this information is not leveraged.

OBJECTIVE

To develop and evaluate a deep learning algorithm on echocardiography videos to enable opportunistic screening for chronic liver disease.

DESIGN

Retrospective observational cohorts.

SETTING

Two large urban academic medical centers.

PARTICIPANTS

Adult patients who received echocardiography and abdominal imaging (either abdominal ultrasound or abdominal magnetic resonance imaging) with ≤30 days between tests, between July 4, 2012, to June 4, 2022.

EXPOSURE

Deep learning model predictions from a deep-learning computer vision pipeline that identifies subcostal view echocardiogram videos and detects the presence of cirrhosis or steatotic liver disease (SLD).

MAIN OUTCOME AND MEASURES

Clinical diagnosis by paired abdominal ultrasound or magnetic resonance imaging (MRI).

RESULTS

A total of 1,596,640 echocardiogram videos (66,922 studies from 24,276 patients) from Cedars-Sinai Medical Center (CSMC) were used to develop EchoNet-Liver, an automated pipeline that identifies high quality subcostal images from echocardiogram studies and detects the presence of cirrhosis or SLD. In the held-out CSMC test cohort, EchoNet-Liver was able to detect the presence of cirrhosis with an AUC of 0.837 (0.789 - 0.880) and SLD with an AUC of 0.799 (0.758 - 0.837). In a separate test cohort with paired abdominal MRIs, cirrhosis was detected with an AUC of 0.704 (0.689-0.718) and SLD was detected with an AUC of 0.726 (0.659-0.790). In an external test cohort of 106 patients (n = 5,280 videos), the model detected cirrhosis with an AUC of 0.830 (0.738 - 0.909) and SLD with an AUC of 0.768 (0.652 - 0.875).

CONCLUSIONS AND RELEVANCE

Deep learning assessment of clinical echocardiography enables opportunistic screening of SLD and cirrhosis. Application of this algorithm may identify patients who may benefit from further diagnostic testing and treatment for chronic liver disease.

摘要

重要性

全球超过15亿成年人患有慢性肝病,但大多数病例无症状且未被诊断出来。超声心动图应用广泛,可显示肝脏情况;但这些信息未得到有效利用。

目的

开发并评估一种基于超声心动图视频的深度学习算法,以实现对慢性肝病的机会性筛查。

设计

回顾性观察队列研究。

地点

两家大型城市学术医疗中心。

参与者

2012年7月4日至2022年6月4日期间接受超声心动图检查和腹部成像(腹部超声或腹部磁共振成像)且两次检查间隔≤30天的成年患者。

暴露因素

来自深度学习计算机视觉流程的深度学习模型预测结果,该流程可识别肋下视图超声心动图视频并检测肝硬化或脂肪性肝病(SLD)的存在。

主要结局和指标

通过配对的腹部超声或磁共振成像(MRI)进行临床诊断。

结果

来自雪松西奈医疗中心(CSMC)的总共1596640个超声心动图视频(来自24276名患者的66922项研究)被用于开发EchoNet-Liver,这是一种自动化流程,可从超声心动图研究中识别高质量的肋下图像并检测肝硬化或SLD的存在。在保留的CSMC测试队列中,EchoNet-Liver能够检测出肝硬化,曲线下面积(AUC)为0.837(0.789 - 0.880),检测SLD的AUC为0.799(0.758 - 0.837)。在一个有配对腹部MRI的单独测试队列中,检测肝硬化的AUC为0.704(0.689 - 0.718),检测SLD的AUC为0.726(0.659 - 0.790)。在一个由106名患者(n = 5280个视频)组成的外部测试队列中,该模型检测肝硬化的AUC为0.830(0.738 - 0.909),检测SLD的AUC为0.768(0.652 - 0.875)。

结论及意义

对临床超声心动图进行深度学习评估可实现对SLD和肝硬化的机会性筛查。应用该算法可能识别出那些可能从慢性肝病的进一步诊断测试和治疗中受益的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/902d/11213089/3baacd3a7c25/nihpp-2024.06.13.24308898v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验