Department of Mathematics, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
Interdiscip Sci. 2023 Mar;15(1):131-145. doi: 10.1007/s12539-022-00546-8. Epub 2022 Dec 23.
Virtual screening (VS) is a computational strategy that uses in silico automated protein docking inter alia to rank potential ligands, or by extension rank protein-ligand pairs, identifying potential drug candidates. Most docking methods use preferred sets of physicochemical descriptors (PCDs) to model the interactions between host and guest molecules. Thus, conventional VS is often data-specific, method-dependent and with demonstrably differing utility in identifying candidate drugs. This study proposes four universality classes of novel consensus scoring (CS) algorithms that combine docking scores, derived from ten docking programs (ADFR, DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB), using decoys from the DUD-E repository ( http://dude.docking.org/ ) against 29 MRSA-oriented targets to create a general VS formulation that can identify active ligands for any suitable protein target. Our results demonstrate that CS provides improved ligand-protein docking fidelity when compared to individual docking platforms. This approach requires only a small number of docking combinations and can serve as a viable and parsimonious alternative to more computationally expensive docking approaches. Predictions from our CS algorithm are compared against independent machine learning evaluations using the same docking data, complementing the CS outcomes. Our method is a reliable approach for identifying protein targets and high-affinity ligands that can be tested as high-probability candidates for drug repositioning.
虚拟筛选(VS)是一种计算策略,它使用计算机自动蛋白质对接等方法对潜在配体进行排序,或者扩展为对蛋白质-配体对进行排序,从而识别潜在的药物候选物。大多数对接方法使用首选的物理化学描述符(PCD)集来模拟宿主和客体分子之间的相互作用。因此,传统的 VS 通常是特定于数据、依赖于方法的,并且在识别候选药物方面的效用明显不同。本研究提出了四种通用性的新型共识评分(CS)算法类别,这些算法结合了来自十个对接程序(ADFR、DOCK、Gemdock、Ledock、PLANTS、PSOVina、QuickVina2、Smina、Autodock Vina 和 VinaXB)的对接分数,使用 DUD-E 数据库(http://dude.docking.org/)中的诱饵来对抗 29 个针对 MRSA 的靶标,以创建一种通用的 VS 配方,该配方可以识别任何合适的蛋白质靶标中的活性配体。我们的结果表明,CS 与单个对接平台相比,提供了更高的配体-蛋白质对接保真度。该方法只需要少量的对接组合,是一种可行且简约的替代方案,比更昂贵的计算对接方法更具优势。我们的 CS 算法的预测结果与使用相同对接数据的独立机器学习评估进行了比较,补充了 CS 的结果。我们的方法是一种可靠的方法,可用于识别蛋白质靶标和高亲和力配体,这些靶标和配体可以作为药物重定位的高概率候选物进行测试。