Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, UK.
Microb Cell Fact. 2022 Dec 22;21(1):268. doi: 10.1186/s12934-022-01982-3.
Escherichia coli is of central interest to biotechnological research and a widely used organism for producing proteins at both lab and industrial scales. However, many proteins remain difficult to produce efficiently in E. coli. This is particularly true for proteins that require post translational modifications such as disulfide bonds.
In this study we develop a novel approach for quantitatively investigating the ability of E. coli to produce disulfide bonds in its own proteome. We summarise the existing knowledge of the E. coli disulfide proteome and use this information to investigate the demand on this organism's quantitative oxidative folding apparatus under different growth conditions. Furthermore, we built an ordinary differential equation-based model describing the cells oxidative folding capabilities. We use the model to infer the kinetic parameters required by the cell to achieve the observed oxidative folding requirements. We find that the cellular requirement for disulfide bonded proteins changes significantly between growth conditions. Fast growing cells require most of their oxidative folding capabilities to keep up their proteome while cells growing in chemostats appear limited by their disulfide bond isomerisation capacities.
This study establishes a novel approach for investigating the oxidative folding capacities of an organism. We show the capabilities and limitations of E. coli for producing disulfide bonds under different growth conditions and predict under what conditions excess capability is available for recombinant protein production.
大肠杆菌是生物技术研究的核心关注点,也是在实验室和工业规模生产蛋白质的广泛应用的生物体。然而,许多蛋白质仍然难以在大肠杆菌中高效生产。对于需要翻译后修饰(如二硫键)的蛋白质尤其如此。
在这项研究中,我们开发了一种新的方法来定量研究大肠杆菌在其自身蛋白质组中形成二硫键的能力。我们总结了大肠杆菌中二硫键蛋白质组的现有知识,并利用这些信息来研究在不同生长条件下,该生物体对定量氧化折叠装置的需求。此外,我们构建了一个基于常微分方程的模型来描述细胞的氧化折叠能力。我们使用该模型推断出细胞实现观察到的氧化折叠要求所需的动力学参数。我们发现,细胞对二硫键结合蛋白的需求在生长条件之间有显著变化。快速生长的细胞需要其大部分氧化折叠能力来维持其蛋白质组,而在恒化器中生长的细胞似乎受到其二硫键异构化能力的限制。
这项研究建立了一种新的方法来研究生物体的氧化折叠能力。我们展示了大肠杆菌在不同生长条件下生产二硫键的能力和局限性,并预测了在什么条件下有多余的能力可用于重组蛋白生产。