Suppr超能文献

新型冠状病毒肺炎(COVID-19)的进展动态以及各项措施对疫情结果的长期影响。

Dynamics of COVID-19 progression and the long-term influences of measures on pandemic outcomes.

作者信息

Lan Yihong, Yin Li, Wang Xiaoqin

机构信息

Suntar Research Institute, Singapore, Singapore.

Karolinska Institutet, Solna, Sweden.

出版信息

Emerg Themes Epidemiol. 2022 Dec 22;19(1):10. doi: 10.1186/s12982-022-00119-6.

Abstract

The pandemic progression is a dynamic process, in which measures yield outcomes, and outcomes in turn influence subsequent measures and outcomes. Due to the dynamics of pandemic progression, it is challenging to analyse the long-term influence of an individual measure in the sequence on pandemic outcomes. To demonstrate the problem and find solutions, in this article, we study the first wave of the pandemic-probably the most dynamic period-in the Nordic countries and analyse the influences of the Swedish measures relative to the measures adopted by its neighbouring countries on COVID-19 mortality, general mortality, COVID-19 incidence, and unemployment. The design is a longitudinal observational study. The linear regressions based on the Poisson distribution or the binomial distribution are employed for the analysis. To show that analysis can be timely conducted, we use table data available during the first wave. We found that the early Swedish measure had a long-term and significant causal effect on public health outcomes and a certain degree of long-term mitigating causal effect on unemployment during the first wave, where the effect was measured by an increase of these outcomes under the Swedish measures relative to the measures adopted by the other Nordic countries. This information from the first wave has not been provided by available analyses but could have played an important role in combating the second wave. In conclusion, analysis based on table data may provide timely information about the dynamic progression of a pandemic and the long-term influence of an individual measure in the sequence on pandemic outcomes.

摘要

疫情发展是一个动态过程,在此过程中,措施产生结果,而结果反过来又会影响后续措施及结果。由于疫情发展的动态性,分析序列中某项措施对疫情结果的长期影响具有挑战性。为了说明这一问题并找到解决方案,在本文中,我们研究了北欧国家疫情的第一波——可能是最具动态性的时期——并分析了瑞典采取的措施相对于其邻国所采取的措施对新冠死亡率、总体死亡率、新冠发病率和失业率的影响。该设计为纵向观察性研究。分析采用基于泊松分布或二项分布的线性回归。为了表明分析可以及时进行,我们使用了第一波疫情期间可用的表格数据。我们发现,瑞典早期采取的措施对公共卫生结果具有长期且显著的因果效应,并且在第一波疫情期间对失业率具有一定程度的长期缓解因果效应,这种效应通过瑞典措施下这些结果相对于其他北欧国家所采取措施的增加来衡量。第一波疫情的这些信息尚未在现有分析中给出,但可能在抗击第二波疫情中发挥了重要作用。总之,基于表格数据的分析可能会及时提供有关疫情动态发展以及序列中某项措施对疫情结果的长期影响的信息。

相似文献

本文引用的文献

1
The changing epidemiology of SARS-CoV-2.SARS-CoV-2 的流行病学变化。
Science. 2022 Mar 11;375(6585):1116-1121. doi: 10.1126/science.abm4915. Epub 2022 Mar 10.
3
The Swedish COVID-19 strategy revisited.瑞典的新冠疫情应对策略再审视。
Lancet. 2021 May 1;397(10285):1619. doi: 10.1016/S0140-6736(21)00885-0. Epub 2021 Apr 19.
5
The effect of interventions on COVID-19.干预措施对新型冠状病毒肺炎的影响。
Nature. 2020 Dec;588(7839):E26-E28. doi: 10.1038/s41586-020-3025-y. Epub 2020 Dec 23.
6
COVID-19 and the Swedish enigma.新冠疫情与瑞典之谜。
Lancet. 2021 Jan 23;397(10271):259-261. doi: 10.1016/S0140-6736(20)32750-1. Epub 2020 Dec 23.
7
Inferring the effectiveness of government interventions against COVID-19.推断政府干预 COVID-19 的效果。
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.abd9338. Epub 2020 Dec 15.
9
Ranking the effectiveness of worldwide COVID-19 government interventions.对全球 COVID-19 政府干预措施的效果进行排名。
Nat Hum Behav. 2020 Dec;4(12):1303-1312. doi: 10.1038/s41562-020-01009-0. Epub 2020 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验