West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
Biomolecules. 2022 Nov 29;12(12):1782. doi: 10.3390/biom12121782.
There are currently no accurate biomarkers for optimal treatment selection in early-stage non-small cell lung cancer (NSCLC). Novel therapeutic targets are needed to improve NSCLC survival outcomes. This study systematically evaluated the association between genome-scale regulatory network centralities and NSCLC tumorigenesis, proliferation, and survival in early-stage NSCLC patients. Boolean implication networks were used to construct multimodal networks using patient DNA copy number variation, mRNA, and protein expression profiles. statistics of differential gene/protein expression in tumors versus non-cancerous adjacent tissues, dependency scores in in vitro CRISPR-Cas9/RNA interference (RNAi) screening of human NSCLC cell lines, and hazard ratios in univariate Cox modeling of the Cancer Genome Atlas (TCGA) NSCLC patients were correlated with graph theory centrality metrics. Hub genes in multi-omics networks involving gene/protein expression were associated with oncogenic, proliferative potentials and poor patient survival outcomes ( < 0.05, Pearson's correlation). Immunotherapy targets , and were ranked as top hub genes within the 10th percentile in most constructed multi-omics networks. , and were discovered as important hub genes in NSCLC proliferation with oncogenic potential. These results support the importance of hub genes in NSCLC tumorigenesis, proliferation, and prognosis, with implications in prioritizing therapeutic targets to improve patient survival outcomes.
目前,在早期非小细胞肺癌(NSCLC)中,还没有准确的生物标志物来选择最佳治疗方法。需要新的治疗靶点来改善 NSCLC 的生存结果。本研究系统地评估了基因组规模的调控网络中心性与早期 NSCLC 患者 NSCLC 肿瘤发生、增殖和生存之间的关系。使用布尔推理网络,根据患者的 DNA 拷贝数变异、mRNA 和蛋白质表达谱构建多模态网络。对肿瘤与非癌相邻组织中差异基因/蛋白表达的统计、人 NSCLC 细胞系体外 CRISPR-Cas9/RNA 干扰(RNAi)筛选中的依赖性评分,以及癌症基因组图谱(TCGA) NSCLC 患者单变量 Cox 建模中的风险比与图论中心性度量相关。涉及基因/蛋白表达的多组学网络中的枢纽基因与致癌、增殖潜能和患者不良生存结局相关(<0.05,Pearson 相关性)。免疫治疗靶点和在大多数构建的多组学网络中排名前 10%的顶级枢纽基因。和被发现是具有致癌潜力的 NSCLC 增殖的重要枢纽基因。这些结果支持了枢纽基因在 NSCLC 肿瘤发生、增殖和预后中的重要性,这对确定治疗靶点以改善患者生存结果具有重要意义。
Biomolecules. 2022-11-29
Cancers (Basel). 2021-8-26
Int J Mol Sci. 2021-12-25
Int J Mol Sci. 2022-11-29
J Cell Physiol. 2019-5-24
Cell Oncol (Dordr). 2019-3-18
Cell Mol Biol Lett. 2022-9-4
Pharmaceutics. 2022-5-18
Signal Transduct Target Ther. 2022-1-31
Int J Mol Sci. 2021-12-25