文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非小细胞肺癌调控网络中的枢纽基因。

Hub Genes in Non-Small Cell Lung Cancer Regulatory Networks.

机构信息

West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.

出版信息

Biomolecules. 2022 Nov 29;12(12):1782. doi: 10.3390/biom12121782.


DOI:10.3390/biom12121782
PMID:36551208
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9776006/
Abstract

There are currently no accurate biomarkers for optimal treatment selection in early-stage non-small cell lung cancer (NSCLC). Novel therapeutic targets are needed to improve NSCLC survival outcomes. This study systematically evaluated the association between genome-scale regulatory network centralities and NSCLC tumorigenesis, proliferation, and survival in early-stage NSCLC patients. Boolean implication networks were used to construct multimodal networks using patient DNA copy number variation, mRNA, and protein expression profiles. statistics of differential gene/protein expression in tumors versus non-cancerous adjacent tissues, dependency scores in in vitro CRISPR-Cas9/RNA interference (RNAi) screening of human NSCLC cell lines, and hazard ratios in univariate Cox modeling of the Cancer Genome Atlas (TCGA) NSCLC patients were correlated with graph theory centrality metrics. Hub genes in multi-omics networks involving gene/protein expression were associated with oncogenic, proliferative potentials and poor patient survival outcomes ( < 0.05, Pearson's correlation). Immunotherapy targets , and were ranked as top hub genes within the 10th percentile in most constructed multi-omics networks. , and were discovered as important hub genes in NSCLC proliferation with oncogenic potential. These results support the importance of hub genes in NSCLC tumorigenesis, proliferation, and prognosis, with implications in prioritizing therapeutic targets to improve patient survival outcomes.

摘要

目前,在早期非小细胞肺癌(NSCLC)中,还没有准确的生物标志物来选择最佳治疗方法。需要新的治疗靶点来改善 NSCLC 的生存结果。本研究系统地评估了基因组规模的调控网络中心性与早期 NSCLC 患者 NSCLC 肿瘤发生、增殖和生存之间的关系。使用布尔推理网络,根据患者的 DNA 拷贝数变异、mRNA 和蛋白质表达谱构建多模态网络。对肿瘤与非癌相邻组织中差异基因/蛋白表达的统计、人 NSCLC 细胞系体外 CRISPR-Cas9/RNA 干扰(RNAi)筛选中的依赖性评分,以及癌症基因组图谱(TCGA) NSCLC 患者单变量 Cox 建模中的风险比与图论中心性度量相关。涉及基因/蛋白表达的多组学网络中的枢纽基因与致癌、增殖潜能和患者不良生存结局相关(<0.05,Pearson 相关性)。免疫治疗靶点和在大多数构建的多组学网络中排名前 10%的顶级枢纽基因。和被发现是具有致癌潜力的 NSCLC 增殖的重要枢纽基因。这些结果支持了枢纽基因在 NSCLC 肿瘤发生、增殖和预后中的重要性,这对确定治疗靶点以改善患者生存结果具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/73816149f30d/biomolecules-12-01782-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/25e560931ebd/biomolecules-12-01782-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/70f4654a61bd/biomolecules-12-01782-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/9f05cbcde7e5/biomolecules-12-01782-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/73816149f30d/biomolecules-12-01782-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/25e560931ebd/biomolecules-12-01782-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/70f4654a61bd/biomolecules-12-01782-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/9f05cbcde7e5/biomolecules-12-01782-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad7/9776006/73816149f30d/biomolecules-12-01782-g004.jpg

相似文献

[1]
Hub Genes in Non-Small Cell Lung Cancer Regulatory Networks.

Biomolecules. 2022-11-29

[2]
Immune-Omics Networks of , , and in Non-Small Cell Lung Cancer.

Cancers (Basel). 2021-8-26

[3]
A Multi-Omics Network of a Seven-Gene Prognostic Signature for Non-Small Cell Lung Cancer.

Int J Mol Sci. 2021-12-25

[4]
Multi-Omics Immune Interaction Networks in Lung Cancer Tumorigenesis, Proliferation, and Survival.

Int J Mol Sci. 2022-11-29

[5]
Using biological information to analyze potential miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer.

BMC Cancer. 2022-3-21

[6]
Identification and Integrated Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer.

Med Sci Monit. 2019-12-5

[7]
Identifying the hub genes in non-small cell lung cancer by integrated bioinformatics methods and analyzing the prognostic values.

Pathol Res Pract. 2021-12

[8]
The Regulatory Network and Potential Role of LINC00973-miRNA-mRNA ceRNA in the Progression of Non-Small-Cell Lung Cancer.

Front Immunol. 2021

[9]
Identification and validation of key genes associated with non-small-cell lung cancer.

J Cell Physiol. 2019-5-24

[10]
Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer - a short report.

Cell Oncol (Dordr). 2019-3-18

引用本文的文献

[1]
Identification of a central network hub of key prognostic genes based on correlation between transcriptomics and survival in patients with metastatic solid tumors.

Ther Adv Med Oncol. 2024-10-17

[2]
Investigation of Diagnostic and Prognostic Value of CLEC4M of Non-Small Cell Lung Carcinoma Associated with Immune Microenvironment.

Int J Gen Med. 2023-4-15

[3]
Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets.

Cells. 2022-12-26

本文引用的文献

[1]
The O-glycosylating enzyme GALNT2 acts as an oncogenic driver in non-small cell lung cancer.

Cell Mol Biol Lett. 2022-9-4

[2]
High expression of PTGES3 is an independent predictive poor prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma.

Int Immunopharmacol. 2022-9

[3]
Single B Cell Gene Co-Expression Networks Implicated in Prognosis, Proliferation, and Therapeutic Responses in Non-Small Cell Lung Cancer Bulk Tumors.

Cancers (Basel). 2022-6-25

[4]
Integrated Multi-Omics Analysis Model to Identify Biomarkers Associated With Prognosis of Breast Cancer.

Front Oncol. 2022-6-10

[5]
NMT1 Enhances the Stemness of NSCLC Cells by Activating the PI3K/AKT Pathway.

Pharmacology. 2022

[6]
BUB3, beyond the Simple Role of Partner.

Pharmaceutics. 2022-5-18

[7]
Proteomic Characterization of a Candidate Polygenic Driver of Metabolism in Non-small Cell Lung Cancer.

J Mol Biol. 2022-7-15

[8]
Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance.

Nat Cell Biol. 2022-2

[9]
LncRNAs LCETRL3 and LCETRL4 at chromosome 4q12 diminish EGFR-TKIs efficiency in NSCLC through stabilizing TDP43 and EIF2S1.

Signal Transduct Target Ther. 2022-1-31

[10]
A Multi-Omics Network of a Seven-Gene Prognostic Signature for Non-Small Cell Lung Cancer.

Int J Mol Sci. 2021-12-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索