文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于埃洛石粘土矿物的抗菌纳米材料:研究进展与展望

Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook.

作者信息

Massaro Marina, Ciani Rebecca, Cinà Giuseppe, Colletti Carmelo Giuseppe, Leone Federica, Riela Serena

机构信息

Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), V.le delle Scienze, Ed. 17, 90128 Palermo, Italy.

出版信息

Antibiotics (Basel). 2022 Dec 6;11(12):1761. doi: 10.3390/antibiotics11121761.


DOI:10.3390/antibiotics11121761
PMID:36551418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9774400/
Abstract

Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.

摘要

细菌感染是全球主要死因之一。因此,多年来已开发出几种具有抗菌特性的纳米材料。在这种背景下,粘土矿物因其固有特性,自古以来就被有效地用作抗菌剂。埃洛石纳米管是一种新兴的纳米材料,已在多个领域用作抗菌剂。在这篇综述中,我们总结了一些使用原始和改性埃洛石纳米管作为抗菌剂、伤口愈合和骨科植入物支架、活性食品包装填料以及食品害虫防治中农药载体的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/f6ce3bc4ae6e/antibiotics-11-01761-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/281f757d4bb2/antibiotics-11-01761-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/df7f8a1b34be/antibiotics-11-01761-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/ac83933c7a27/antibiotics-11-01761-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/2265d00b1ddd/antibiotics-11-01761-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/3b5388c5a85e/antibiotics-11-01761-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/0be2d6516e7a/antibiotics-11-01761-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/978ce634ae83/antibiotics-11-01761-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/117e14213507/antibiotics-11-01761-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/8285287deeae/antibiotics-11-01761-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/c237725643e4/antibiotics-11-01761-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/5119da1e7962/antibiotics-11-01761-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/f6ce3bc4ae6e/antibiotics-11-01761-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/281f757d4bb2/antibiotics-11-01761-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/df7f8a1b34be/antibiotics-11-01761-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/ac83933c7a27/antibiotics-11-01761-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/2265d00b1ddd/antibiotics-11-01761-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/3b5388c5a85e/antibiotics-11-01761-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/0be2d6516e7a/antibiotics-11-01761-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/978ce634ae83/antibiotics-11-01761-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/117e14213507/antibiotics-11-01761-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/8285287deeae/antibiotics-11-01761-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/c237725643e4/antibiotics-11-01761-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/5119da1e7962/antibiotics-11-01761-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/9774400/f6ce3bc4ae6e/antibiotics-11-01761-g012.jpg

相似文献

[1]
Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook.

Antibiotics (Basel). 2022-12-6

[2]
Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field.

Int J Mol Sci. 2022-9-29

[3]
Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications.

ACS Appl Mater Interfaces. 2017-5-15

[4]
Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites.

Adv Colloid Interface Sci. 2019-11-9

[5]
Chemical modification of halloysite nanotubes for controlled loading and release.

J Mater Chem B. 2018-6-7

[6]
Past, Present and Future Perspectives on Halloysite Clay Minerals.

Molecules. 2020-10-21

[7]
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications.

Int J Biol Macromol. 2022-9-1

[8]
Clay-based drug-delivery systems: what does the future hold?

Ther Deliv. 2017-7

[9]
Modification of halloysite lumen with dopamine derivatives as filler for antibiofilm coating.

J Colloid Interface Sci. 2023-9-15

[10]
Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials.

Carbohydr Polym. 2020-10-1

引用本文的文献

[1]
A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights.

Nanomaterials (Basel). 2025-8-18

[2]
Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing.

Pharmaceutics. 2024-9-27

[3]
Clay Nanotubes Loaded with Diazepam or Xylazine Permeate the Brain through Intranasal Administration in Mice.

Int J Mol Sci. 2023-6-2

[4]
Antioxidant Efficacy and "In Vivo" Safety of a Bentonite/Vitamin C Hybrid.

Pharmaceutics. 2023-4-7

本文引用的文献

[1]
Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities.

Colloids Surf B Biointerfaces. 2022-12

[2]
Progress and prospects of nanomaterials against resistant bacteria.

J Control Release. 2022-11

[3]
Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release.

Bioact Mater. 2022-9-12

[4]
Architectural design of core-shell nanotube systems based on aluminosilicate clay.

Nanoscale Adv. 2022-4-26

[5]
Halloysite Nanotube-Based Pesticide Formulations with Enhanced Rain Erosion Resistance, Foliar Adhesion, and Insecticidal Effect.

ACS Appl Mater Interfaces. 2022-9-14

[6]
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications.

Int J Biol Macromol. 2022-9-1

[7]
3D-Printed Gentamicin-Releasing Poly-ε-Caprolactone Composite Prevents Fracture-Related Infection in Mice.

Pharmaceutics. 2022-6-28

[8]
Photoinduced Antibacterial Activity and Cytotoxicity of CdS Stabilized on Mesoporous Aluminosilicates and Silicates.

Pharmaceutics. 2022-6-21

[9]
Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing.

Bioact Mater. 2022-6-14

[10]
Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications.

Nanomaterials (Basel). 2022-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索