Suppr超能文献

轴突再生:潜在分子机制与潜在治疗靶点

Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets.

作者信息

Akram Rabia, Anwar Haseeb, Javed Muhammad Shahid, Rasul Azhar, Imran Ali, Malik Shoaib Ahmad, Raza Chand, Khan Ikram Ullah, Sajid Faiqa, Iman Tehreem, Sun Tao, Han Hyung Soo, Hussain Ghulam

机构信息

Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.

Department of Physiology, Sargodha Medical College, Sargodha 40100, Pakistan.

出版信息

Biomedicines. 2022 Dec 8;10(12):3186. doi: 10.3390/biomedicines10123186.

Abstract

Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.

摘要

外周神经系统中的轴突在受损后具有自我修复的能力,而中枢神经系统中的轴突则无法做到这一点。脊髓、脑和周围神经损伤的一个常见且重要的特征是轴突再生的中断。有趣的是,内在生长因子在受损神经的轴突再生中起着重要作用。蛋白质组学特征、微管稳定性、核糖体定位和信号通路等各种因素划分了中枢和外周轴突自我更新能力的界限。不幸的是,胶质瘢痕形成、髓磷脂相关抑制分子、神经营养因子缺乏和炎症反应等都是限制轴突再生的因素。cAMP、MAPK、JAK/STAT、ATF3/CREB、BMP/SMAD、AKT/mTORC1/p70S6K、PI3K/AKT、GSK-3β/CLASP、BDNF/Trk、Ras/ERK、整合素/黏着斑激酶、RhoA/ROCK/LIMK和POSTN/整合素等分子通路在神经损伤后被激活,被认为是轴突再生的重要参与者。除了上述通路外,生长因子、微小RNA和星形胶质细胞也是再生过程中值得称赞的参与者。在这篇综述中,我们讨论了每条通路的详细机制以及可能成为潜在有价值靶点的关键参与者,以帮助实现快速的轴突愈合。我们还确定了潜在靶点,这些靶点有助于填补再生相关分子通路中的知识空白,并为制定更有效的策略以促进神经系统损伤后的轴突再生提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9314/9775075/e68248ef8f2a/biomedicines-10-03186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验