Suppr超能文献

通过参与者可识别信息的标准化和验证提高队列与医院匹配的准确性。

Improving Cohort-Hospital Matching Accuracy through Standardization and Validation of Participant Identifiable Information.

作者信息

Hu Yanhong Jessika, Fedyukova Anna, Wang Jing, Said Joanne M, Thomas Niranjan, Noble Elizabeth, Cheong Jeanie L Y, Karanatsios Bill, Goldfeld Sharon, Wake Melissa

机构信息

Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia.

Department of Pediatrics, The University of Melbourne, Parkville, VIC 3052, Australia.

出版信息

Children (Basel). 2022 Dec 7;9(12):1916. doi: 10.3390/children9121916.

Abstract

Linking very large, consented birth cohorts to birthing hospitals clinical data could elucidate the lifecourse outcomes of health care and exposures during the pregnancy, birth and newborn periods. Unfortunately, cohort personally identifiable information (PII) often does not include unique identifier numbers, presenting matching challenges. To develop optimized cohort matching to birthing hospital clinical records, this pilot drew on a one-year (December 2020-December 2021) cohort for a single Australian birthing hospital participating in the whole-of-state Generation Victoria (GenV) study. For 1819 consented mother-baby pairs and 58 additional babies (whose mothers were not themselves participating), we tested the accuracy and effort of various approaches to matching. We selected demographic variables drawn from names, DOB, sex, telephone, address (and birth order for multiple births). After variable standardization and validation, accuracy rose from 10% to 99% using a deterministic-rule-based approach in 10 steps. Using cohort-specific modifications of the Australian Statistical Linkage Key (SLK-581), it took only 3 steps to reach 97% (SLK-5881) and 98% (SLK-5881.1) accuracy. We conclude that our SLK-5881 process could safely and efficiently achieve high accuracy at the population level for future birth cohort-birth hospital matching in the absence of unique identifier numbers.

摘要

将大规模的、已获同意的出生队列与分娩医院的临床数据相链接,能够阐明孕期、分娩期和新生儿期医疗保健及接触情况的生命历程结局。不幸的是,队列中的个人身份识别信息(PII)通常不包括唯一识别码,这带来了匹配方面的挑战。为了开发与分娩医院临床记录的优化队列匹配方法,本试点研究利用了参与全州范围的维多利亚世代(GenV)研究的一家澳大利亚分娩医院的一年期(2020年12月至2021年12月)队列。对于1819对已获同意的母婴对以及另外58名婴儿(其母亲未参与研究),我们测试了各种匹配方法的准确性和工作量。我们选择了从姓名、出生日期、性别、电话、地址(以及多胞胎的出生顺序)中提取的人口统计学变量。经过变量标准化和验证后,使用基于确定性规则的方法分10步操作,准确率从10%提高到了99%。使用针对该队列对澳大利亚统计链接密钥(SLK - 581)进行的修改,仅需3步就能达到97%(SLK - 5881)和98%(SLK - 5881.1)的准确率。我们得出结论,在没有唯一识别码的情况下,我们的SLK - 5881流程能够在人群层面安全、高效地实现高精度,用于未来出生队列与分娩医院的匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb9/9776599/53094be7947e/children-09-01916-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验