Suppr超能文献

比较宏基因组学和宏转录组学工具:做出正确选择的指南。

Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice.

机构信息

Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra", CSIC (IPBLN-CSIC), 18016 Granada, Spain.

Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.

出版信息

Genes (Basel). 2022 Dec 3;13(12):2280. doi: 10.3390/genes13122280.

Abstract

The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a "new" technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.

摘要

由于微生物在环境(例如土壤污染)和生物医学(例如寄生虫病、自闭症)方面的重要性,它们的研究领域引起了极大的兴趣。革命性的下一代测序技术的出现,以及它们在 16S、18S 或 23S 核糖体亚基的高变区的应用,使得对包括细菌、古菌、真核生物和真菌在内的大量生物的研究更加深入。此外,随着分析软件的发展,特定数据库(例如 SILVA 或 RDP)的创建,推动了这些研究的巨大发展。随着每个样本测序成本的持续降低,新的协议也层出不穷,例如 shotgun 测序,它允许对样本中的所有分类域进行分析。高变区测序和 shotgun 测序是从微生物群落中存在的 DNA 对微生物进行分类的技术。然而,它们无法测量活跃表达的内容。相反,我们认为宏转录组学是一种“新技术”,它使得微生物群落的 mRNA 鉴定成为可能,量化基因表达水平和活跃的生物途径。此外,它还可用于描述宿主与其微生物组之间的共生相互作用。在本文中,我们检查了上述三种技术,并讨论了不同软件和数据库的实现,这些都对获得可靠结果产生了重大影响。最后,我们开发了两个利用 Nextflow 技术的易于使用的流程。这些流程旨在为普通用户提供所需的一切,以便使用 QIMME2 对标记基因进行宏基因组分析,并使用 Kraken2/Bracken 进行宏转录组学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e12/9777648/cb27ab52a88a/genes-13-02280-g001.jpg

相似文献

1
Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice.
Genes (Basel). 2022 Dec 3;13(12):2280. doi: 10.3390/genes13122280.
2
Metatranscriptomics: A Tool for Clinical Metagenomics.
OMICS. 2024 Aug;28(8):394-407. doi: 10.1089/omi.2024.0130. Epub 2024 Jul 19.
3
Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2.
Microbiome. 2020 Aug 28;8(1):124. doi: 10.1186/s40168-020-00900-2.
4
An Introduction to Whole-Metagenome Shotgun Sequencing Studies.
Methods Mol Biol. 2021;2243:107-122. doi: 10.1007/978-1-0716-1103-6_6.
6
Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists.
J Microbiol. 2020 Mar;58(3):176-192. doi: 10.1007/s12275-020-9525-5. Epub 2020 Feb 27.
7
Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes.
Microbiome. 2023 Apr 10;11(1):72. doi: 10.1186/s40168-023-01505-1.
8
An in-depth evaluation of metagenomic classifiers for soil microbiomes.
Environ Microbiome. 2024 Mar 28;19(1):19. doi: 10.1186/s40793-024-00561-w.
9
Deep learning models for bacteria taxonomic classification of metagenomic data.
BMC Bioinformatics. 2018 Jul 9;19(Suppl 7):198. doi: 10.1186/s12859-018-2182-6.

引用本文的文献

2
From air to insight: the evolution of airborne DNA sequencing technologies.
Microbiology (Reading). 2025 May;171(5). doi: 10.1099/mic.0.001564.
3
Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification.
Front Med Technol. 2025 Apr 15;6:1434799. doi: 10.3389/fmedt.2024.1434799. eCollection 2024.
5
Gut microbiota in health and disease: advances and future prospects.
MedComm (2020). 2024 Nov 20;5(12):e70012. doi: 10.1002/mco2.70012. eCollection 2024 Dec.
7
Approach to the diagnosis and management of dysbiosis.
Front Nutr. 2024 Apr 19;11:1330903. doi: 10.3389/fnut.2024.1330903. eCollection 2024.
9
Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap.
Int J Mol Sci. 2023 Sep 7;24(18):13786. doi: 10.3390/ijms241813786.
10
OMICS and Other Advanced Technologies in Mycological Applications.
J Fungi (Basel). 2023 Jun 19;9(6):688. doi: 10.3390/jof9060688.

本文引用的文献

1
A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors.
Cell. 2022 Sep 29;185(20):3807-3822.e12. doi: 10.1016/j.cell.2022.09.015.
2
Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions.
Cell. 2022 Sep 29;185(20):3789-3806.e17. doi: 10.1016/j.cell.2022.09.005.
3
Metagenomics Approaches to Investigate the Neonatal Gut Microbiome.
Front Pediatr. 2022 Jun 21;10:886627. doi: 10.3389/fped.2022.886627. eCollection 2022.
4
Current findings in endometrial microbiome: impact on uterine diseases.
Reproduction. 2022 Mar 24;163(5):R81-R96. doi: 10.1530/REP-21-0120.
5
Metagenomics Versus Metatranscriptomics of the Murine Gut Microbiome for Assessing Microbial Metabolism During Inflammation.
Front Microbiol. 2022 Feb 3;13:829378. doi: 10.3389/fmicb.2022.829378. eCollection 2022.
6
Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Improving the Gut Microbiota in an Open-Label Study.
Front Cell Infect Microbiol. 2021 Oct 19;11:759435. doi: 10.3389/fcimb.2021.759435. eCollection 2021.
7
Integrated Analysis of Microbiome and Transcriptome Data Reveals the Interplay Between Commensal Bacteria and Fibrin Degradation in Endometrial Cancer.
Front Cell Infect Microbiol. 2021 Sep 21;11:748558. doi: 10.3389/fcimb.2021.748558. eCollection 2021.
8
The Gut Microbiome and Inflammatory Bowel Diseases.
Annu Rev Med. 2022 Jan 27;73:455-468. doi: 10.1146/annurev-med-042320-021020. Epub 2021 Sep 23.
9
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders.
Pharmacol Res. 2021 Oct;172:105840. doi: 10.1016/j.phrs.2021.105840. Epub 2021 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验