Li Yang, Li Huajiao, Guo Sui, Liu Yanxin
School of Economics and Management, China University of Geosciences, Beijing 100083, China.
School of Business, Jiangsu Normal University, Xuzhou 221116, China.
Entropy (Basel). 2022 Dec 5;24(12):1773. doi: 10.3390/e24121773.
The present large-scale emerging industry evolves into a form of an open system with blurring boundaries. However, when complex structures with numerous nodes and connections encounter an open system with blurring boundaries, it becomes much more challenging to effectively depict the structure of an emerging industry, which is the precondition for robustness evaluation. Therefore, this study proposes a novel framework based on a data-driven percolation process and complex network theory to depict the network skeleton and thus evaluate the structural robustness of large-scale emerging industries. The empirical data we used are actual firm-level transaction data in the Chinese new energy vehicle industry in 2019, 2020, and 2021. We applied our method to explore the transformation of structural robustness in the Chinese new energy vehicle industry in pre-COVID (2019), under-COVID (2020), and post-COVID (2021) eras. We unveil that the Chinese new energy vehicle industry became more robust against random attacks in the post-COVID era than in pre-COVID.
当前的大规模新兴产业正演变成一种边界模糊的开放系统形式。然而,当具有众多节点和连接的复杂结构遇到边界模糊的开放系统时,要有效描绘新兴产业的结构就变得更具挑战性,而这是稳健性评估的前提条件。因此,本研究提出了一种基于数据驱动的渗流过程和复杂网络理论的新颖框架,以描绘网络骨架,从而评估大规模新兴产业的结构稳健性。我们使用的实证数据是2019年、2020年和2021年中国新能源汽车行业实际的企业层面交易数据。我们应用我们的方法来探究中国新能源汽车行业在新冠疫情前(2019年)、疫情期间(2020年)和疫情后(2021年)时代结构稳健性的转变。我们揭示出,与新冠疫情前相比,中国新能源汽车行业在疫情后时代对随机攻击变得更加稳健。