Suppr超能文献

基于多通道脑电信号的情感识别中的多维特征

Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals.

作者信息

Li Qi, Liu Yunqing, Liu Quanyang, Zhang Qiong, Yan Fei, Ma Yimin, Zhang Xinyu

机构信息

Department of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130000, China.

Economics School, Jilin University, Changchun 130000, China.

出版信息

Entropy (Basel). 2022 Dec 15;24(12):1830. doi: 10.3390/e24121830.

Abstract

As a major daily task for the popularization of artificial intelligence technology, more and more attention has been paid to the scientific research of mental state electroencephalogram (EEG) in recent years. To retain the spatial information of EEG signals and fully mine the EEG timing-related information, this paper proposes a novel EEG emotion recognition method. First, to obtain the frequency, spatial, and temporal information of multichannel EEG signals more comprehensively, we choose the multidimensional feature structure as the input of the artificial neural network. Then, a neural network model based on depthwise separable convolution is proposed, extracting the input structure's frequency and spatial features. The network can effectively reduce the computational parameters. Finally, we modeled using the ordered neuronal long short-term memory (ON-LSTM) network, which can automatically learn hierarchical information to extract deep emotional features hidden in EEG time series. The experimental results show that the proposed model can reasonably learn the correlation and temporal dimension information content between EEG multi-channel and improve emotion classification performance. We performed the experimental validation of this paper in two publicly available EEG emotional datasets. In the experiments on the DEAP dataset (a dataset for emotion analysis using EEG, physiological, and video signals), the mean accuracy of emotion recognition for arousal and valence is 95.02% and 94.61%, respectively. In the experiments on the SEED dataset (a dataset collection for various purposes using EEG signals), the average accuracy of emotion recognition is 95.49%.

摘要

作为人工智能技术普及的一项主要日常任务,近年来,心理状态脑电图(EEG)的科学研究受到了越来越多的关注。为了保留EEG信号的空间信息并充分挖掘与EEG时间相关的信息,本文提出了一种新颖的EEG情感识别方法。首先,为了更全面地获取多通道EEG信号的频率、空间和时间信息,我们选择多维特征结构作为人工神经网络的输入。然后,提出了一种基于深度可分离卷积的神经网络模型,用于提取输入结构的频率和空间特征。该网络可以有效减少计算参数。最后,我们使用有序神经元长短期记忆(ON-LSTM)网络进行建模,该网络可以自动学习层次信息,以提取隐藏在EEG时间序列中的深度情感特征。实验结果表明,所提出的模型能够合理地学习EEG多通道之间的相关性和时间维度信息内容,提高情感分类性能。我们在两个公开可用的EEG情感数据集上对本文进行了实验验证。在DEAP数据集(一个使用EEG、生理和视频信号进行情感分析的数据集)的实验中,唤醒和效价的情感识别平均准确率分别为95.02%和94.61%。在SEED数据集(一个使用EEG信号用于各种目的的数据集集合)的实验中,情感识别的平均准确率为95.49%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6099/9778308/50410e8a045c/entropy-24-01830-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验