Suppr超能文献

用于脑电图情感识别的基于4D注意力的神经网络。

4D attention-based neural network for EEG emotion recognition.

作者信息

Xiao Guowen, Shi Meng, Ye Mengwen, Xu Bowen, Chen Zhendi, Ren Quansheng

机构信息

Department of Electronics, Peking University, Beijing, China.

School of Electrical Engineering, Beijing Jiaotong University, Beijing, China.

出版信息

Cogn Neurodyn. 2022 Aug;16(4):805-818. doi: 10.1007/s11571-021-09751-5. Epub 2022 Jan 3.

Abstract

Electroencephalograph (EEG) emotion recognition is a significant task in the brain-computer interface field. Although many deep learning methods are proposed recently, it is still challenging to make full use of the information contained in different domains of EEG signals. In this paper, we present a novel method, called four-dimensional attention-based neural network (4D-aNN) for EEG emotion recognition. First, raw EEG signals are transformed into 4D spatial-spectral-temporal representations. Then, the proposed 4D-aNN adopts spectral and spatial attention mechanisms to adaptively assign the weights of different brain regions and frequency bands, and a convolutional neural network (CNN) is utilized to deal with the spectral and spatial information of the 4D representations. Moreover, a temporal attention mechanism is integrated into a bidirectional Long Short-Term Memory (LSTM) to explore temporal dependencies of the 4D representations. Our model achieves state-of-the-art performances on both DEAP, SEED and SEED-IV datasets under intra-subject splitting. The experimental results have shown the effectiveness of the attention mechanisms in different domains for EEG emotion recognition.

摘要

脑电图(EEG)情感识别是脑机接口领域的一项重要任务。尽管最近提出了许多深度学习方法,但充分利用脑电信号不同域中包含的信息仍然具有挑战性。在本文中,我们提出了一种用于脑电情感识别的新方法,称为基于四维注意力的神经网络(4D-aNN)。首先,将原始脑电信号转换为四维空间-频谱-时间表示。然后,所提出的4D-aNN采用频谱和空间注意力机制来自适应地分配不同脑区和频段的权重,并利用卷积神经网络(CNN)处理四维表示的频谱和空间信息。此外,将时间注意力机制集成到双向长短期记忆(LSTM)中,以探索四维表示的时间依赖性。在个体内部分割的情况下,我们的模型在DEAP、SEED和SEED-IV数据集上均取得了最优性能。实验结果表明了注意力机制在不同域中对脑电情感识别的有效性。

相似文献

1
4D attention-based neural network for EEG emotion recognition.
Cogn Neurodyn. 2022 Aug;16(4):805-818. doi: 10.1007/s11571-021-09751-5. Epub 2022 Jan 3.
2
EEG-based emotion recognition using 4D convolutional recurrent neural network.
Cogn Neurodyn. 2020 Dec;14(6):815-828. doi: 10.1007/s11571-020-09634-1. Epub 2020 Sep 14.
3
Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
J Neurosci Methods. 2022 Jul 1;376:109624. doi: 10.1016/j.jneumeth.2022.109624. Epub 2022 May 16.
4
Attention-based 3D convolutional recurrent neural network model for multimodal emotion recognition.
Front Neurosci. 2024 Jan 10;17:1330077. doi: 10.3389/fnins.2023.1330077. eCollection 2023.
6
Attention-Based Temporal Graph Representation Learning for EEG-Based Emotion Recognition.
IEEE J Biomed Health Inform. 2024 Oct;28(10):5755-5767. doi: 10.1109/JBHI.2024.3395622. Epub 2024 Oct 3.
7
EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism.
IEEE J Biomed Health Inform. 2022 Nov;26(11):5406-5417. doi: 10.1109/JBHI.2022.3198688. Epub 2022 Nov 10.
8
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition.
Front Hum Neurosci. 2023 Apr 13;17:1169949. doi: 10.3389/fnhum.2023.1169949. eCollection 2023.
10
EEG Emotion Recognition via Graph-based Spatio-Temporal Attention Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:571-574. doi: 10.1109/EMBC46164.2021.9629628.

引用本文的文献

2
CIT-EmotionNet: convolution interactive transformer network for EEG emotion recognition.
PeerJ Comput Sci. 2024 Dec 23;10:e2610. doi: 10.7717/peerj-cs.2610. eCollection 2024.
3
Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition.
Front Neurorobot. 2025 Jan 7;18:1481746. doi: 10.3389/fnbot.2024.1481746. eCollection 2024.
4
STAFNet: an adaptive multi-feature learning network via spatiotemporal fusion for EEG-based emotion recognition.
Front Neurosci. 2024 Dec 10;18:1519970. doi: 10.3389/fnins.2024.1519970. eCollection 2024.
5
Set-pMAE: spatial-spEctral-temporal based parallel masked autoEncoder for EEG emotion recognition.
Cogn Neurodyn. 2024 Dec;18(6):3757-3773. doi: 10.1007/s11571-024-10162-5. Epub 2024 Aug 14.
8
HASTF: a hybrid attention spatio-temporal feature fusion network for EEG emotion recognition.
Front Neurosci. 2024 Oct 14;18:1479570. doi: 10.3389/fnins.2024.1479570. eCollection 2024.
9
CATM: A Multi-Feature-Based Cross-Scale Attentional Convolutional EEG Emotion Recognition Model.
Sensors (Basel). 2024 Jul 25;24(15):4837. doi: 10.3390/s24154837.
10
EEG Emotion Recognition Network Based on Attention and Spatiotemporal Convolution.
Sensors (Basel). 2024 May 27;24(11):3464. doi: 10.3390/s24113464.

本文引用的文献

1
EEG-based emotion recognition using 4D convolutional recurrent neural network.
Cogn Neurodyn. 2020 Dec;14(6):815-828. doi: 10.1007/s11571-020-09634-1. Epub 2020 Sep 14.
2
Attentional bias for emotional faces in depressed and non-depressed individuals: an eye-tracking study.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5419-5422. doi: 10.1109/EMBC.2019.8857878.
3
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.
4
Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
IEEE Trans Neural Syst Rehabil Eng. 2018 Sep;26(9):1858-1867. doi: 10.1109/TNSRE.2018.2864119. Epub 2018 Aug 7.
5
EmotionMeter: A Multimodal Framework for Recognizing Human Emotions.
IEEE Trans Cybern. 2019 Mar;49(3):1110-1122. doi: 10.1109/TCYB.2018.2797176. Epub 2018 Feb 8.
6
DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices.
IEEE J Biomed Health Inform. 2018 Jan;22(1):98-107. doi: 10.1109/JBHI.2017.2688239. Epub 2017 Mar 27.
7
The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.
Front Neurosci. 2016 Nov 21;10:530. doi: 10.3389/fnins.2016.00530. eCollection 2016.
8
Application of BCI systems in neurorehabilitation: a scoping review.
Disabil Rehabil Assist Technol. 2015;10(5):355-64. doi: 10.3109/17483107.2014.961569. Epub 2015 Jan 5.
9
Practical emotional neural networks.
Neural Netw. 2014 Nov;59:61-72. doi: 10.1016/j.neunet.2014.06.012. Epub 2014 Jul 8.
10
Differential entropy feature for EEG-based vigilance estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6627-30. doi: 10.1109/EMBC.2013.6611075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验