Xiao Guowen, Shi Meng, Ye Mengwen, Xu Bowen, Chen Zhendi, Ren Quansheng
Department of Electronics, Peking University, Beijing, China.
School of Electrical Engineering, Beijing Jiaotong University, Beijing, China.
Cogn Neurodyn. 2022 Aug;16(4):805-818. doi: 10.1007/s11571-021-09751-5. Epub 2022 Jan 3.
Electroencephalograph (EEG) emotion recognition is a significant task in the brain-computer interface field. Although many deep learning methods are proposed recently, it is still challenging to make full use of the information contained in different domains of EEG signals. In this paper, we present a novel method, called four-dimensional attention-based neural network (4D-aNN) for EEG emotion recognition. First, raw EEG signals are transformed into 4D spatial-spectral-temporal representations. Then, the proposed 4D-aNN adopts spectral and spatial attention mechanisms to adaptively assign the weights of different brain regions and frequency bands, and a convolutional neural network (CNN) is utilized to deal with the spectral and spatial information of the 4D representations. Moreover, a temporal attention mechanism is integrated into a bidirectional Long Short-Term Memory (LSTM) to explore temporal dependencies of the 4D representations. Our model achieves state-of-the-art performances on both DEAP, SEED and SEED-IV datasets under intra-subject splitting. The experimental results have shown the effectiveness of the attention mechanisms in different domains for EEG emotion recognition.
脑电图(EEG)情感识别是脑机接口领域的一项重要任务。尽管最近提出了许多深度学习方法,但充分利用脑电信号不同域中包含的信息仍然具有挑战性。在本文中,我们提出了一种用于脑电情感识别的新方法,称为基于四维注意力的神经网络(4D-aNN)。首先,将原始脑电信号转换为四维空间-频谱-时间表示。然后,所提出的4D-aNN采用频谱和空间注意力机制来自适应地分配不同脑区和频段的权重,并利用卷积神经网络(CNN)处理四维表示的频谱和空间信息。此外,将时间注意力机制集成到双向长短期记忆(LSTM)中,以探索四维表示的时间依赖性。在个体内部分割的情况下,我们的模型在DEAP、SEED和SEED-IV数据集上均取得了最优性能。实验结果表明了注意力机制在不同域中对脑电情感识别的有效性。