School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
Int J Mol Sci. 2022 Dec 15;23(24):15995. doi: 10.3390/ijms232415995.
Alkanes are widespread in the ocean, and is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species B-5 under alkane (-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of , and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (), chemotaxis (, , ), transporting (, , ) and hydroxylation (, , ) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.
烷烃在海洋中广泛存在,是海洋生态系统中最普遍的降解烷烃的细菌之一。小 RNA(sRNA)通常是调控途径的核心,但由于鉴定困难,sRNA 介导的烷烃代谢适应性在很大程度上仍然未知。在这里,使用经过大小选择(~50-nt 至 500-nt)策略的差异 RNA 测序(dRNA-seq)生成了模型物种 B-5 在烷烃(-十六烷)和非烷烃(乙酸盐)条件下的高分辨率 sRNA 图谱。结果,我们在 5' 端以单核苷酸分辨率鉴定了 549 个 sRNA 候选物,其中 63.4% 具有转录起始位点(TSS),36.6% 具有 5' 端加工位点(PSS)。这些 sRNA 几乎来自基因组的任何位置,无论基因内(65.8%)、反义(20.6%)和基因间(6.2%)区域,RNase E 可能在 sRNA 的成熟中起作用。大多数 sRNA 在 的 15 个参考基因组中局部分布,只有 7.5%的 sRNA 在这个属中广泛保守。几种核心保守 sRNA(包括 6S RNA、M1 RNA 和 tmRNA)对烷烃的表达响应表明,它们可能参与烷烃代谢,并导致更活跃的全局转录、RNA 加工和减轻应激。鉴定了两个新的 CsrA 相关 sRNA,它们可能通过隔离全局抑制剂 CsrA 来参与烷烃代谢相关基因的翻译激活。基于全基因组预测的 sRNA-mRNA 相互作用,创建了 sRNA 与烷烃感应()、趋化性(、、)、运输(、、)和羟化(、、)的特征基因的关系。总的来说,sRNA 图谱为揭示关键海洋细菌中的隐蔽调控奠定了基础,其中核心和种特异性 sRNA 都与烷烃适应性代谢有关。