Suppr超能文献

基于低场核磁共振弛豫测量法的湿态含碳材料孔隙率研究

Carbonaceous Materials Porosity Investigation in a Wet State by Low-Field NMR Relaxometry.

作者信息

Kinnertová Eva, Slovák Václav, Zelenka Tomáš, Vaulot Cyril, Delmotte Luc

机构信息

Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic.

Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Université de Haute-Alsace, 15 Rue Jean Starcky, 68057 Mulhouse, France.

出版信息

Materials (Basel). 2022 Dec 16;15(24):9021. doi: 10.3390/ma15249021.

Abstract

The porosity of differently wetted carbonaceous material with disordered mesoporosity was investigated using low-field 1H NMR relaxometry. Spin−spin relaxation (relaxation time T2) was measured using the CPMG pulse sequence. We present a non-linear optimization method for the conversion of relaxation curves to the distribution of relaxation times by using non-specialized software. Our procedure consists of searching for the number of components, relaxation times, and their amplitudes, related to different types of hydrogen nuclei in the sample wetted with different amounts of water (different water-to-carbon ratio). We found that a maximum of five components with different relaxation times was sufficient to describe the observed relaxation. The individual components were attributed to a tightly bounded surface water layer (T2 up to 2 ms), water in small pores especially supermicropores (2 < T2 < 7 ms), mesopores (7 < T2 < 20 ms), water in large cavities between particles (20−1500 ms), and bulk water surrounding the materials (T2 > 1500 ms). To recalculate the distribution of relaxation times to the pore size distribution, we calculated the surface relaxivity based on the results provided by additional characterization techniques, such as thermoporometry (TPM) and N2/−196 °C physisorption.

摘要

使用低场¹H NMR弛豫测量法研究了具有无序介孔率的不同润湿状态的碳质材料的孔隙率。使用CPMG脉冲序列测量自旋 - 自旋弛豫(弛豫时间T2)。我们提出了一种非线性优化方法,用于通过使用非专业软件将弛豫曲线转换为弛豫时间分布。我们的程序包括搜索与不同水量(不同水碳比)润湿的样品中不同类型氢核相关的成分数量、弛豫时间及其幅度。我们发现,最多五个具有不同弛豫时间的成分足以描述观察到的弛豫。各个成分分别归因于紧密结合的表面水层(T2高达2毫秒)、小孔尤其是超微孔中的水(2 < T2 < 7毫秒)、介孔(7 < T2 < 20毫秒)、颗粒间大空隙中的水(20 - 1500毫秒)以及材料周围的大量水(T2 > 1500毫秒)。为了将弛豫时间分布重新计算为孔径分布,我们根据热孔率测定法(TPM)和N₂/-196°C物理吸附等其他表征技术提供的结果计算了表面弛豫率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4d3/9788483/3e716708c0cd/materials-15-09021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验