Filonova Elena, Gilev Artem, Maksimchuk Tatyana, Pikalova Nadezhda, Zakharchuk Kiryl, Pikalov Sergey, Yaremchenko Aleksey, Pikalova Elena
Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia.
Laboratory of Chemical Design of New Multifunctional Materials, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia.
Membranes (Basel). 2022 Dec 2;12(12):1222. doi: 10.3390/membranes12121222.
The LaCaNiCuO (y = 0.0-0.4) nickelates, synthesized via a solid-state reaction method, are investigated as prospective materials for oxygen permeation membranes and IT-SOFC cathodes. The obtained oxides are single-phase and possess a tetragonal structure (/ sp. gr.). The unit cell parameter and the cell volume increase with Cu-substitution. The interstitial oxygen content and total conductivity decrease with Cu-substitution. The low concentration of mobile interstitial oxygen ions results in a limited oxygen permeability of Cu-substituted LaCaNiO ceramic membranes. However, increasing the Cu content over y = 0.2 induces two beneficial effects: enhancement of the electrochemical activity of the LaCaNiCuO (y = 0.0; 0.2; 0.4) electrodes and decreasing the sintering temperature from 1200 °C to 900 °C. Enhanced electrode activity is due to better sintering properties of the developed materials ensuring excellent adhesion and facilitating the charge transfer at the electrode/electrolyte interface and, probably, faster oxygen exchange in Cu-rich materials. The polarization resistance of the LaCaNiCuO electrode on the CeSmO electrolyte is as low as 0.15 Ω cm and 1.95 Ω cm at 850 °C and 700 °C in air, respectively. The results of the present work demonstrate that the developed LaCaNiCuO-based electrode can be considered as a potential cathode for intermediate-temperature solid oxide fuel cells.
通过固态反应法合成的LaCaNiCuO(y = 0.0 - 0.4)镍酸盐,作为氧渗透膜和IT - SOFC阴极的潜在材料进行了研究。所获得的氧化物为单相,具有四方结构(/空间群)。随着Cu取代,晶胞参数和晶胞体积增大。间隙氧含量和总电导率随Cu取代而降低。移动间隙氧离子的低浓度导致Cu取代的LaCaNiO陶瓷膜的氧渗透率有限。然而,当Cu含量超过y = 0.2时会产生两个有益效果:增强LaCaNiCuO(y = 0.0;0.2;0.4)电极的电化学活性,并将烧结温度从1200℃降低到900℃。增强的电极活性归因于所开发材料更好的烧结性能,确保了优异的附着力,并促进了电极/电解质界面处的电荷转移,并且可能在富Cu材料中实现了更快的氧交换。在空气中,LaCaNiCuO电极在CeSmO电解质上的极化电阻在850℃和700℃时分别低至0.15Ω·cm和1.95Ω·cm。本工作的结果表明,所开发的基于LaCaNiCuO的电极可被视为中温固体氧化物燃料电池的潜在阴极。