Suppr超能文献

MEMS薄膜吸气剂-加热器单元的结构优化与力学模拟

Structural Optimization and Mechanical Simulation of MEMS Thin-Film Getter-Heater Unit.

作者信息

Peng Xinlin, Ji Yucheng, Chen Shuo, Guo Song, Feng Liuhaodong, Xu Yang, Wang Shinan

机构信息

School of Microelectronics, Shanghai University, Shanghai 201800, China.

Shanghai Industrial μTechnology Research Institute, Shanghai 201899, China.

出版信息

Micromachines (Basel). 2022 Dec 18;13(12):2252. doi: 10.3390/mi13122252.

Abstract

A MEMS thin-film getter-heater unit has been previously proposed for the vacuum packaging of a Micro-Electro-Mechanical System (MEMS) device, where the floating structure (FS) design is found to be obviously more power-efficient than the solid structure (SS) one by heat transfer capacity simulation. However, the mechanical strength of the FS is weaker than the SS by nature. For high temperature usage, the unit structure must be optimized in order to avoid fracture of the cantilever beam or film delamination due to strong excessive stress caused by heating. In this paper, COMSOL is used to simulate the stress and deformation of the MEMS thin-film getter-heater unit with the cantilever structure. By comparing various cantilever structures, it is found that a model with a symmetrically-shaped heater and edge-center-located cantilever model (II-ECLC model) is the most suitable. In this model, even when the structure is heated to about 600 °C, the maximum stress of the cantilever beam is only 455 MPa, much lower than the tensile strength of silicon nitride (SiN, 12 GPa), and the maximum deformation displacement is about 200 μm. Meanwhile, the interfacial stress between the getter and the insulating layer is 44 MPa, sufficiently lower than the adhesion strength between silicon nitride film and titanium film (400-1850 MPa). It is further found that both the stress of the cantilever structure and the interfacial stress between the getter and the insulating layer beneath increase linearly with temperature; and the deformation of the cantilever structure is proportional to its stress. This work gives guidance on the design of MEMS devices with cantilever structures and works in high temperature situations.

摘要

先前已提出一种用于微机电系统(MEMS)器件真空封装的MEMS薄膜吸气剂-加热器单元,通过传热能力模拟发现,浮动结构(FS)设计在功率效率方面明显高于固体结构(SS)设计。然而,FS的机械强度本质上比SS弱。对于高温使用,必须优化单元结构,以避免由于加热引起的强烈过大应力导致悬臂梁断裂或薄膜分层。本文利用COMSOL模拟了具有悬臂结构的MEMS薄膜吸气剂-加热器单元的应力和变形。通过比较各种悬臂结构,发现具有对称形状加热器和边缘中心定位悬臂模型(II-ECLC模型)的模型是最合适的。在该模型中,即使结构加热到约600°C,悬臂梁的最大应力也仅为455MPa,远低于氮化硅(SiN,12GPa)的拉伸强度,最大变形位移约为200μm。同时,吸气剂与绝缘层之间的界面应力为44MPa,远低于氮化硅膜与钛膜之间的粘附强度(400-1850MPa)。进一步发现,悬臂结构的应力和下方吸气剂与绝缘层之间的界面应力均随温度线性增加;悬臂结构的变形与其应力成正比。这项工作为具有悬臂结构且在高温环境下工作的MEMS器件的设计提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e8b/9788257/4b9bcdeda58e/micromachines-13-02252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验