Suppr超能文献

介观结构增强了猕猴连接组中的通信,揭示了大脑中的结构-功能对应关系。

Mesoscopic architecture enhances communication across the macaque connectome revealing structure-function correspondence in the brain.

作者信息

Pathak Anand, Menon Shakti N, Sinha Sitabhra

机构信息

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.

Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.

出版信息

Phys Rev E. 2022 Nov;106(5-1):054304. doi: 10.1103/PhysRevE.106.054304.

Abstract

Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to unravel the complexity arising from interactions between its large number of components. Focusing on a wiring diagram that spans the cortex, basal ganglia, and thalamus of the macaque brain, we identify robust modules in the network that provide a mesoscopic-level description of its topological architecture. Surprisingly, we find that the modular architecture facilitates rapid communication across the network, instead of localizing activity as is typically expected in networks having community organization. By considering processes of diffusive spreading and coordination, we demonstrate that the specific pattern of inter- and intramodular connectivity in the network allows propagation to be even faster than equivalent randomized networks with or without modular structure. This pattern of connectivity is seen at different scales and is conserved across principal cortical divisions, as well as subcortical structures. Furthermore, we find that the physical proximity between areas is insufficient to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out the effect of distance constraints on the connectivity. By supplementing the topological information about the macaque connectome with physical locations, volumes, and functions of the constituent areas and analyzing this augmented dataset, we reveal a counterintuitive role played by the modular architecture of the brain in promoting global coordination of its activity. It suggests a possible explanation for the ubiquity of modularity in brain networks.

摘要

从中间尺度的组织结构层面分析大脑,为揭示其大量组成部分之间相互作用所产生的复杂性提供了一种方法。聚焦于猕猴大脑皮层、基底神经节和丘脑的布线图,我们在网络中识别出了强大的模块,这些模块对其拓扑结构进行了介观层面的描述。令人惊讶的是,我们发现模块化架构促进了网络中的快速通信,而不是像具有社区组织的网络中通常预期的那样将活动局限于局部。通过考虑扩散传播和协调过程,我们证明网络中模块间和模块内连接的特定模式使得传播速度比具有或不具有模块化结构的等效随机网络还要快。这种连接模式在不同尺度上都能看到,并且在主要的皮层分区以及皮层下结构中都是保守的。此外,我们发现区域之间的物理距离不足以解释模块化组织,因为即使在排除距离约束对连接性的影响之后,仍然可以获得类似的介观结构。通过用组成区域的物理位置、体积和功能补充猕猴连接组的拓扑信息,并分析这个扩充的数据集,我们揭示了大脑模块化架构在促进其活动的全局协调中所起的一个违反直觉的作用。这为大脑网络中模块化的普遍存在提供了一种可能的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验